Constraint-Oriented Model for Describing Distributed Cooperative
Systems and Efficient Deadlock Detection Using Symmetries

Takaaki Umedut, Hirozumi Yamaguchif, Keiichi Yasumoto'T,
Akio Nakata! and Teruo Higashino!

7 : Department of Informatics and Mathematical Science, Osaka University
1-3 Machikaneyama-cho, Toyonaka Osaka 560-8531, Japan
{umedu,h-yamagu,nakata,higashino}@ics.es.osaka-u.ac.jp

71 : Department of Information Processing and Management
1-1-1 Bamba, Hikone Shiga 522-8522, Japan
yasumoto@biwako.shiga-u.ac.jp

Abstract

In this paper, we introduce a formal model for de-
signing distributed cooperative systems (concurrent sys-
tems) with symmetries and propose an efficient dead-
lock detection method on this model. In our method,
we describe a specification of a system by a set of
coloured Petri-nets and synchronization among them.
FEach coloured Petri-net 1s either the specification of a
participant’s behavior or the constraint about the tem-
poral ordering of multiple participants’ behavior. For
this specification, if given constrainis are inconsistent
with each other, the total system enters a deadlock
state. In general, the reachability analysis for such sys-
tems may cause the state explosion problem depending
on the size of the system. However, there are a lot
of cases that multiple participants carry out the same
behavior in distributed cooperative systems such as net-
work meeting. In such symmetric specifications, by
merging equivalent states in a given specification, we
can reduce the cost necessary for the reachability anal-
ysis. Here, we propose an efficient reachability analy-
sis method using symmetries. We have also developed
a verification tool based on the method and shown the
usefulness of the method using some examples.

1 Introduction

According to the progress of high-speed networks
in recent years, many distributed cooperative systems
such as network meeting, remote lecturing and dis-

tributed multimedia authoring have been developed.
In such distributed cooperative systems, the number of
participants is often changed, and various constraints
are added depending on the number of participants and
network environment. However, if given constraints are
inconsistent with each other, there may not exist exe-
cutable behavior satisfying all the constraints, i.e., the
given system may enter a deadlock state. In order to
develop high reliable distributed systems, in this paper,
we propose a model for specifying such a distributed
cooperative system with unspecific number of partici-
pants and an efficient reachability analysis method for
detecting the deadlocks in the model.

To specify such distributed cooperative systems sim-
ply and hierarchically, we use a constraint-oriented
style, which is close to the description styles in [1, 2].
Such a constraint-oriented style is also used in the for-
mal specification language LOTOS [3]. In the proposed
constraint-oriented style, we describe a specification of
a distributed cooperative system (concurrent system)
as (A) a set of coloured Petri-nets and (B) synchro-
nization among them. Each Petri-net describes either
(A-1) each participant’s behavior or (A-2) the temporal
ordering of multiple participants’ actions and/or con-
straints among those participants. Here, we call the
above (A-1) and (A-2) descriptions as a behavior net
and a constraint net, respectively. In a behavior net,
each participant’s behavior is specified independently
of other participants’ behavior. Many and unspecific
participants’ behavior can be specified as a coloured
Petri-net with multiple coloured tokens if those partic-
ipants’ behavior is essentially the same. In constraint

nets, mutual exclusion among behavior nets and/or
constraints as the total system can be specified. In
the description of synchronization in the above (B), by
letting an action in a behavior net and the same action
in a constraint net be executed simultaneously, we can
make the temporal ordering of the actions in behavior
nets satisfy all the given constraints. Moreover, we can
specify not only one-to-one synchronization but also
n-to-k synchronization where arbitrary k processes in
given n processes satisfying the constraints can syn-
chronize with each other.

If we use this model to describe the specification of
a total system, by changing the constraint nets, we can
easily modify the total behavior of the system. How-
ever, the system may have the possibility to reach a
deadlock state if we specify inconsistent constraints si-
multaneously. Since general reachability analysis tech-
niques for coloured Petri-nets can detect such dead-
locks if the number of states is finite, we impose a re-
striction on our model that limits the number of reach-
able states to finite. But if we use such techniques
simply the cost for the verification still becomes large
and the state explosion problem may occur.

In order to reduce the verification costs, Ref. [4]
propose techniques to merge equivalent states into one
and make a reduced size’s reachability graph called OS
graph [5] from the original reachability graph. Ref.
[6, 7] propose another kind of efficient reachability anal-
ysis techniques using symbolic reachability graph. Ref.
[8, 9] use invariants for reducing the verification costs.
Ref. [10, 11] use stochastic Petri-nets, and Ref. [12]
uses compositional high level Petri-nets for efficient
reachability analysis.

There have not been proposed general techniques
for finding equivalence relation between two reachable
states mechanically from given specifications. How-
ever, in distributed cooperative systems, there are a
lot of cases that multiple participants carry out essen-
tially the same behavior and they do not cause differ-
ent results for reachability analysis. For example, in a
simple network meeting system where only one of mul-
tiple participants can be a speaker at each moment, the
number of the participants does not affect the reach-
ability analysis of the system specification, since the
behavior of those participants can be regarded as the
same, 1.e., the specification has symmetries.

Here, we propose an efficient reachability analysis
method where equivalence relation between two reach-
able states is found mechanically from a given spec-
ification by using the information about the symme-
tries. Moreover, we can reduce the number of reachable
states, by some reduction rules based on the symme-
tries applied for CPN before reachablity analysis. We

have also developed a verification tool and shown the
usefulness of the method using some examples of net-
work meeting systems.

The paper is organized as follows. Section 2 ex-
plains our constraint-oriented model and the details of
coloured Petri-nets. Section 3 describes the reacha-
bility analysis method using symmetries. The experi-
mental results are also given. In Section 4, we give the
conclusion.

2 Specification of Distributed Cooper-
ative Systems in Proposed Model

2.1 Petri Net and Coloured Petri Net

A Petri-net (PN in short) is a weighted directed
graph that consists of two types of nodes, places and
transitions. Each directed edge a between a place and a
transition is called an arc where an integer called weight
(denoted as W (a)) is associated. Each place may have
tokens, and an assignment of tokens to places is called
a marking. A marking m assigns m(p) tokens to place
p. A transition ¢ may fire iff each its input place p of ¢
connected by an arc a has W(a) tokens. If ¢ fires, W(a)
tokens are taken from each input place p, and W(a’)
tokens are added to each output place p’ of ¢ connected
by an arc a’.

A coloured Petri-net (CPN in short) is a high level
Petri net[13] where each token has a value. The values
are distinguished by types called colours. The colours
are, for example, integers, real numbers and charac-
ters. A colour is associated with each token of CPN,
The weight W(a) of an arc a in CPN is a multi-set of
binding variables. And the assignment of tokens m(p)
represented by a marking m to a place p is also a multi-
set of tokens. Here, a multi-set is a set that may include
more than one identical element. For each binding vari-
able, a colour is associated and a token with the same
colour can be assigned to the binding variable. Here-
after, an assignment of a multi-set of tokens to a multi-
set of binding variables is simply called a binding. For
each transition ¢, a boolean function of binding vari-
ables that appear in the weights of the incoming arcs
of t is associated and called a guard.

A transition ¢ may fire iff (i) each input place p of ¢
connected by an arc a has a multi-set of tokens that can
be assigned to W (a) and (ii) the value of the guard of ¢
on this binding is true. If ¢ fires, the multi-set of tokens
are taken from each input place p of ¢, and the multi-set
of tokens W (a’) that are determined by each binding to
W (a) are added to each output place p’ of ¢ connected
by an arc a’. Note that the binding variables in the

Figure 1. Firing of Transition in CPN

weight W (a') of each outgoing arc @’ must appear in
at least one of the weights of the incoming arcs of ¢.
Fig. 1 shows an example. Suppose that z and y are
binding variables and a and b are values of the same
colours as z and y, respectively. kxz + hy represents
a multi-set of z and y where the numbers of z and y
are k and h, respectively. In this case, since a binding
[# = a,y = b] satisfies the guard “z! =y’ (z # y) of ¢
true, ¢ can fire on this binding. If ¢ fires, tokens ¢ and
b are taken from places P1 and P2 respectively, and
the multi-set of tokens 3a + 2b is added to place P3.

2.2 CPN Specification in
Oriented Style

Constraint-

CPN is a suitable model to describe specifications
of distributed cooperative systems. This is mainly
because the same behavior of participants (e.g. the
behavior of students in remote lecturing), can be de-
scribed as a single net where each coloured token rep-
resents an individual participant. However, for the ef-
ficient design of distributed cooperative systems where
the temporal ordering of actions of participants should
be specified, we introduce the concept of constraint-
oriented style into CPN.

A specification of a distributed cooperative system
written in CPN in constraint-oriented style consists of
a set of behavior nets, a set of constraint nets and syn-
chronization. Each behavior net includes tokens that
represent participants. FEach constraint net specifies
the temporal ordering of transitions in behavior nets.
Each synchronization associates each transition of a
constraint net with one of the transitions in behavior
nets. For each synchronization, a boolean function of
binding variables of the two transitions can be specified
as a guard.

The CPN specification of n participants’ system (for
simplicity, participants are denoted as integers 1..n
hereafter) with k different types of behavior (k < n)
consists of k behavior nets, h constraint nets (h > 0)
and [synchronization (I > 0). We assume that the
specification must be described in the following style.

e Hereafter, each behavior net is denoted as BN;
(1 < i < k). BN; contains a set of tokens t;
of the colour “person”, an enumerative type with
elements 1.n. Here (a) Uicj<it; = {l.n} and

tjNt;r = 0 must hold, (b) the set of existing tokens
in BNj; is always equals to ¢;. These indicate that
each token in B N; represents a participant. More-
over, each transition of BN; has guard “true”.

o Hereafter, each constraint net is denoted as C'N;
(1 < j < h). The colours allowed to use in con-
straint nets are “person”, the limited number of
integers and “e”, which represents an empty colour
(tokens that have no value). Here, considering the
need for specifying “arbitrary number of partic-
ipants”, we introduce a new colour “variant” for
the binding variables of constraint nets. A binding
variable of this colour is a special variable where
any multi-set of tokens can be assigned. Each C'N;
must be bounded. Moreover, each transition of
CNj; has guard “true”.

e Hereafter, each synchronization is denoted as
syncy (1 <z <1). For each sync, that associates
t, of CN; with t, of BN;, a boolean function of
binding variables used in the weights of the in-
coming arcs of ¢, or ¢, can be specified as a guard.
Here, we introduce a special function #(v) of bind-
ing variable v of colour “variant”. This function
returns the number of tokens that are assigned to
v.

2.3 Example Specification

Fig. 2 and Table 1 shows an example specification
of a simple network meeting system written in CPN
in this style, where one presenter and three audiences
participate in the meeting. BNy and B N5 are behavior
nets that represent the behavior of the presenter and
the audiences, respectively. CN; and C'N,y are con-
straint nets. Six synchronization with guards syney, ..
and syncg are specified in Table 1 and represented as
arrows in Fig. 2.

In BNi, two actions “PRESENT_START” (start
presentation) and “PRESENT_END” (end presenta-
tion) are specified for the presenter. In BN,, two
actions “QUESTION_START” (start a question) and
“QUESTION_END” (end a question) are specified for
the three audiences. z and y are binding variables of
colour “person”. For these behavior nets, the two con-
straint nets and synchronization specify the temporal
ordering of their actions. They represent the following
constraints.

(1) Questions must not be started before the presen-
tation is started.

(i1) Each audience may ask a question only once before
the presentation is stopped.

a PRESENT_START PRESENT_END
'X I : ‘ :
4

-

1, |Audiences

P22 QUESTION START py,

Constraint2

1
|
|
|
|
|
|

Figure 2. CPN Specification of Simple Network Meeting System in Constraint Oriented Style

Behavior Net Constraint Net \
Net Transition Net Transition Guard

syney | BNy | PRESENT.START | CN; | PRESENT_START | true

synes | BNy | QUESTION_START | CN; | QUESTION_START |y =2

synes | BNy QUESTION_END CN;y QUESTION_END true

syncy | BNy PRESENT_END CN; PRESENT_END #(V1)+#(V2) =3
synes | BNy | QUESTION_START | CN, | QUESTION_START | true

syncg | BNy PRESENT_END C Ny PRESENT_END true

Table 1. Description of Synchronization

(iii) ¢ questions must be asked before the presentation
is stopped.

The constraint (i) is represented by C'N; and two
synchronization sync; and syncy. In syncy, two
transitions “PRESENT_START” of BN; and CN;
synchronize, and in syncs, two transitions “QUES-
TION_START” of BNy and CN; synchronize. Ac-
cording to C' Ny, “QUESTION_START” cannot be ex-
ecuted without the presence of tokens of colour “per-
son” in place Psp of C'Ny. Those tokens are pro-
duced by the firing of “PRESENT_START”. Therefore,
“QUESTION_START” cannot fire before the firing of
“PRESENT_START”.

The constraint (ii) is represented by C'Ny and three
synchronization syncs, syncs and syncs. In order to
execute “PRESENT_END” | the value of the guard of
syncy must be true. The guard includes two bind-
ing variables V'1 and V2 of colour “variant” where any
multi-set of tokens can be assigned. Here, each to-
ken in place Ps; represents an audience who has not
asked a question yet. On the other hand, each token
in place Psgq represents an audience who has already
asked a question by firing of “QUESTION_START”
and “QUESTION_END?”. These tokens are removed if
“PRESENT_END” fires because the guard of syncy
“#(V1) + #(V2) = 3” needs all the three tokens in
Psp and Psg to be assigned to V1 and V2. This means
that each audience who has already asked a question is
never allowed to ask a question once again before the

firing of “PRESENT_END”.

The constraint (iii) is represented by C'N; and
synchronization syncs and syncs. By each firing of
“QUESTION_START” in C'Ny, token “e” is produced
in place Ps;. The tokens in place Py represent the
number of questions that have been asked after the pre-
sentation has been started. In order to end the presen-
tation by the firing of “PRESENT_END”, there must
be ¢ tokens of “¢” in Pgp.

In Section 3, we explain how a specification de-
scribed in this model is transformed into a pure CPN
where the reachability analysis can be performed. The
state space reduction by using the symmetries of CPN
is also explained.

3 Reachability Analysis

In our model, since we specify a system specification
as a set of behavior nets, constraint nets and synchro-
nization among them, the total system may include
deadlock states due to some constraints inconsistent
with each other. Generally we can check whether a sys-
tem includes a deadlock state or not by constructing
the reachability graph of the system. Here, we adopt a
policy to check the deadlock-free property or liveness
property of a given system by constructing an occur-
rence graph[5], which is known as a kind of abstraction
of the reachability graph. To construct an occurrence
graph, we transform a given specification (consisting of
several CPNs and synchronization among them) into

Pab .
Paa
PRESENT_START q
V1+V2
x[]x “ ’
° . e
AL+AZ
V2 PRESENT_END
AL+A2+A3

p2b

QUESTION_START QUESTION_END,

Figure 3. Specification of Total System Derived
from Fig.2

the equivalent single CPN. Then for the derived CPN,
we construct the corresponding occurrence graph so
that the number of nodes in the graph is reduced using
symmetries.

3.1 Derivation of Single CPN from CPN
Specification in Constraint-Oriented
Style

The proposed transformation technique is as follows.

(i) Each pair of transitions in a constraint net and
a behavior net that are specified to synchronize
is merged into a single transition. If a guard is
specified in the synchronization, the guard should
be added as the guard function of the transition

(Fig.3).

(i1) Each transition with variant type variables is re-
placed by a set of transitions without those vari-
ables (Fig.4). This replacement is carried out as
follows.

(a) Enumerate the possible bindings for the vari-
ant type variables, where each binding satis-
fies the specified guard functions.

(b) For each possible binding, generate a new
transition with appropriate tokens and vari-
ables for the binding.

To make sure that (a) is always possible, we sup-
pose that the number of possible bindings for each
variant type variable is finite. Fig.4 shows the CPN
derived from the specification in Fig.2. As an example,
the transitions PRESENT_ENDI1,..,PRESENT_END4
in Fig.4 are derived by applying the step (ii). These
transitions are generated from the combination of tran-
sitions PRESENT_END of BN; and C'N; in Fig.2
where the variant type variables of PRESENT_END of
C'N; are replaced by the variables x1,..,23. From the
guard “#(V1) 4+ #(V2) = 3”7, the possible bindings of

AL+A2+A3

e 7
=
QUESTION_START QUESTION_END

Figure 4. Transformed Specification of Total System

V1 and V2 are the following four patterns: {(#(V1),
#(V2)} = {(0,1),(1,2),(2,1),(3,0)}. Transitions
PRESENT_ENDI1,.., PRESENT_END4 correspond to
those patterns, respectively. For example, variable V'1
in PRESENT_END?2 is replaced by variable 3 and
variable V2 is replaced by z1 + 22 as a result of the
binding. In this way, a set of concurrent finite CPNs
including variant type variables are transformed into a
single finite CPN.

3.2 Reachability Analysis with OS Graph

Let us suppose that a network conferencing system
consisting of a chairman, k presenters and n audiences
is modeled as a set of £k + n + 1 CPNs in general.
In this case, if we strictly distinguish the & + n + 1
types of tokens from each other, a quite large occur-
rence graph (reachability graph) will be derived from
the given specification.

However, if we allow any audience to ask a ques-
tion in a given system specification, we can regard
that the global state transition of the system is the
same whoever asks a question. In such a case, we need
not distinguish each individual audience from the oth-
ers in constructing the occurrence graph. Instead, we
can construct the corresponding OS graph (occurrence
graph with symmetries) where the number of possi-
ble states is reduced using symmetries, and carry out
the reachability analysis efficiently. The OS graph is a
reachability graph where each node corresponds to an
equivalent class of states classified depending on the
given symmetries. Since in the OS graph, a node can
represent multiple states, the size of reachability graph

can be reduced and we can efficiently carry out the
reachability analysis.

The occurrence graph is defined as a pair (M, A4).
M = {my,..,m,} is the set of all possible markings
and A C M x M represents a state transition. Here
(mi,mj) € A holds if and only if marking m; is reach-
able by the firing of one transition from marking m;.
The OS graph is a graph where the number of states
is reduced by unifying “equivalent” states into a single
state. For a given equivalence relation E, the OS graph
is represented as a pair (M, A), where M is a family of
sets of equivalent markings and A is a set of state tran-
sitions on M. Hereafter, [m] denotes the set of mark-
ings that are equivalent with m. M = {[m4], .., [mn]}
is a family of sets of equivalent markings calculated by
classifying M by E. A is defined such that

Vmg,my : (mi,mj) € A — ([mi], [m;]) € A (1)
Here, if the following condition holds, it is known that
(M, A) is a deadlock free OS graph if and only if the
original occurrence graph is deadlock free[5].

([mi], [my]) € A
— Vm} € [m;] : Hm} € [my] : (m;,mg) €A (2)

Intuitive Proof : From the condition (1), if m;
is reachable from m; in the graph (M, A), [m;] is also
reachable from [m;] in the graph (M, A). From the
condition (2), if [m;] is reachable from [m;] in the
graph (M, A), for any marking m} € [m;], there ex-
ists a marking m} € [m;] where m] is reachable from

J

mh. O

3.3 Sufficient Condition of Symmetries

There are no general methods for finding an equiva-
lence relation satisfying the above (1) and (2) automat-
ically. Here, we would like to give a sufficient condition
for finding such an equivalence relation automatically.
Here, we consider a set of symmetric tokens. The word
“a set S of symmetric tokens” means that for the ini-
tial marking, weight and guard in a given specification,
either the following (i) or (ii) holds;

(1) any colour of tokens contained in S is not specified.

(ii) all the colours of tokens contained in S are speci-

fied.

For example, for the specification in Fig.2, let S denote
the set of tokens {41, A2, A3}. In Fig.2, the initial
marking contains either all elementsin S or no elements
in S. For each weight and guard, the same property
holds. So, S = {A1l, A2, A3} can be regarded as a set
of symmetric tokens.

For a given CPN specification in constraint-oriented
style, by checking all initial marking, weights and
guards step-by-step, we can extract the sets of tokens
appeared in the initial marking, weights and guards.
For each set of tokens, we can mechanically check
whether either the above (i) or (ii) holds. Then, we
can mechanically find a set of symmetric tokens for a
given CPN specification if there exists such a set.

Hereafter, we will propose a method to generate an
equivalence relation F satisfying the above conditions
(1) and (2) mechanically from the derived set of sym-
metric tokens. Note that for a set S of symmetric to-
kens such as S = {41, A2, A3}, let p; and p, denote
two different lists containing all the tokens in S (for
example, p1 = [Al A2 A3] and p» = [A2, Al, A3]).
Then, we say that p; is a permutation of p, vise versa.

Here, for a given set S of symmetric tokens, let us
consider a relation F between two reachable mark-
ings m; and m} where m} is obtained from m; by
replacing S in m; with a permutation of S and vise
versa. For example, for the set of symmetric tokens
S = {A1,A2, A3} in Fig. 2, two reachable markings
m; = (0, P1,A2 + A3, A1, A2 + A3, A1,0,2¢,e) and
m; = (0,P1, Al + A3, A2, A1 + A3, A2,0,2¢,¢e) sat-
isfy the relation F since m} is obtained from m; by
replacing [A1, A2, A3] in m; with one of its permuta-
tions [A2, A1, A3] and vise versa. In our method, this
relation E is an equivalence relation.

Intuitively this is clear because all the symmetric
tokens move in the same way and make no difference
between two markings m; and m/ where a token pro-
ceeds in m; and one of its symmetric tokens proceeds
in m}. The sketch of proof is given as follows.

Assume that two reachable markings m; and m/ sat-
1sfy the relation E based on the set S of symmetric to-
kens, where m/ is obtained by replacing S in m; with
one of its permutations (this permutation is denoted
as p hereafter). Also assume a marking m; reachable
from m; by the firing of a transition 7" on a binding B.
Here, since the tokens of S are symmetric, those tokens
in binding B can be replaced with the permutation p,
and this replacement makes a new binding B’. Obvi-
ously, since m/ is obtained by the same permutation
p, there exists a state transition from m/ to a marking
m} by the firing of the same transition 7" on binding
B'. Then we can say that m; and mj satisfy the rela-
tion E by the same permutation p, since permutation
p replaces the tokens of S in m; that are in each input
(or output) place of T" with the ones in the same input
(or output) place in m}. Consequently, for every mark-
ing m; € [m;], there exist a marking m; € [m;] and a
state transition from m; to mj ((mj, m}) € A). There-
fore, the sufficient condition for equivalence relation in

Section 3.2 holds.

Now we can say that since the two markings m; =
(0,P1,A2 + A3, A1, A2 + A3, A1,0,2e,e) and m; =
(0, P1, A1 + A3, A2, A1 + A3, A2,0,2¢,¢) in Fig.2 sat-
isfy the above equivalence relation F, they are merged
in the corresponding OS graph.

3.4 Further Reduction of CPN and Omit-
ting Colour Information

In our method, we use the following techniques for
reducing the size of CPNs so that the reachability anal-
ysis can be efficiently carried out.

e A consecutive sequence of transitions is trans-
formed into one transition. The transitions that
will obviously fire sequentially and are not speci-
fied to synchronize with other CPNs are replaced
by one transition.

e If there are consecutive transitions #q,%5 in a net
and consecutive transition t{,t5 in another net,
and if ¢; and ¢5 synchronize with #{ and), re-
spectively, then the two synchronization relation
can be merged into one synchronization.

e The synchronization guard checking the colours of
tokens can be deleted if the guard is always true in
checking the condition of firing for any reachable
marking and there is no more synchronization that
is specified with guard in a given specification.

e The colour information of a set of tokens can be
omitted, if the colours of these tokens are never
checked anywhere. To do so, we introduce a new
token that represents all of the tokens belonging
to the set, and replace the existing tokens by the
new token.

For example, in Fig.2 the synchronization 2 and
3 are sequential and their guards are the same. So,
each QUESTION_START and QUESTION_END can
be combined into one transition 7. As a result, a set
of tokens {A1, A2, A3} is obviously always placed on
the input place of the transition 7" of BN2. And other
tokens except tokens A1, A2 and A3 are never placed
on the input place of transition 7" of CN1. So, if a
token is on the place of CN1, this token must be also
placed on the place of BN2 and the guard y = z holds.
And since no other synchronization between BN2 and
CN1 is specified, this guard of synchronization can be
deleted. As a result, since there is no specification that
distinguishes tokens A1, A2 and A3, they can be re-
garded as the same token. So we can replaces them by
a new token A for reachability analysis.

3.5 Reachability Analysis System

In order to evaluate our method, we have developed
a system to derive a single CPN from a given specifi-
cation consisting of behavior nets, constraint nets and
synchronization. This system derives a single CPN by
coupling the transitions of the behavior nets and con-
straint nets specified to synchronize for some specific
cases. And then it reduces the size of CPN by picking
up the symmetric tokens and by omitting the colour
information needless to distinguish. Then we check
the deadlock-free property with a general formal model
checker for CPN.

3.6 Experimental Result

We have used a tool to design and simulate Petri-
nets called Design/CPN[14] in our reachability anal-
ysis system. We have measured the time to examine
the deadlock-free property of the example of Fig.2. For
this example, we have checked the example as changing
the number of audiences and the number of questions.
Table 2 shows the results. In this table, the size of the
reachability graph and the time consumed for the cal-
culation are shown for the following three cases: (i) the
case of generating occurrence graph without consider-
ing symmetries; (ii) the case of making the OS graph
by using symmetries; and (iii) the case of making the
OS graph after omitting some colour information. In
case (ii), the size of the graph is very small compared
with case (i), while the consumed time may increase
due to calculation of symmetries. In case (iii), the con-
sumed time is substantially reduced, especially in large
specifications.

4 Conclusion and Future Work

We have proposed a constraint-oriented model for
developing distributed cooperative systems with sym-
metries. In our model, we describe the specification of
a system by a set of coloured Petri-nets and synchro-
nization among them. A specification of each node
is described independently and the interactions among
them are specified using constraints and synchroniza-
tion among them.

We have also proposed a method for efficient reacha-
bility analysis for this model. In our method, the sym-
metries are automatically detected from a given speci-
fication and the reachability analysis is quickly carried
out by making an OS graph using the symmetries. We
have adopted this method for an example, and we can
reduce the size of reachability graphs and the required
time for reachability analysis.

(1) Occurrence Graph (i1) OS Graph (ii) OS Graph
(Omit Colour Information)
Audience | #Nodes | #Arcs Time | #Nodes | #Arcs Time | #Nodes | #Arcs Time
3 28 61 1 Sec. 11 14 1 Sec. 11 14 1 Sec.
4 66 177 1 Sec. 11 14 1 Sec. 11 14 1 Sec.
5 132 451 1 Sec. 11 14 1 Sec. 11 14 1 Sec.
6 234 1333 7 Sec. 11 14 3 Sec. 11 14 1 Sec.
7 380 6063 | 212 Sec. 11 14 | 586 Sec. 11 14 1 Sec.
15 11 14 3 Sec.
16 11 14 | 11 Sec.
17 11 14 | 17 Sec.

Table 2. Experimental Result

To extend this model so that we can specify time

constraints and to develop a method of efficient reach-
ability analysis for such a model are our future work.

References

[1] T. Bolognesi : “Toward Constraint-Object Ori-
ented Development”, IEFEE Trans. on Software
Eng., Vol. 26, No. 7, pp. 594 — 616 (2000).

[2] C. A. Vissers, G. Scollo and M. v. Sinderen : “Ar-
chitecture and Specification Style in Formal De-
scriptions of Distributed Systems”, Proc. 8th Int.
Symp. on Protocol Specification, Testing, and Ver-
ification (PSTV-VIII), pp. 189-204 (1988).

[3] ISO : “Information Processing System, Open Sys-
tems Interconnection, LOTOS—A Formal De-
scription Technique Based on the Temporal Order-
ing of Observational Behaviour”, IS 8807 (1989).
[4] J. B. Jorgensen and L. M. Kristensen : “Com-
puter Aided Verification of Lamport’s Fast Mutual
Exclusion Algorithm Using Colored Petri Nets
and Occurrence Graphs with Symmetries”, IEFFE
Trans. on Parallel and Distributed Systems, Vol.
10, No. 7, pp.714-722 (1999).

[6] K. Jensen : “Coloured Petri Nets”, EATCS Mono-
graphs in Theoretical Computer Science Vol. 2.,
Springer-Verlag, (1997).

[6] N. Hameurlain and C. Sibertin-Blanc : “Fi-
nite Symbolic Reachability Graphs for High-Level
Petri Nets”, Proc. of jth Asia-Pacific Software
Engineering and Int. Computer Science Confer-
ence (APSEC 97 / ICSC ’97), pp. 150-159
(1997).

[7] J. Cortadella : “Combining Structural and Sym-
bolic Methods for the Verification of Concurrent

[10]

[11]

[12]

[13]

[14]

Conf. on Application of
Design (CSD ’98), pp.

Systems”, Proc. of Int.
Concurrency to System
152-157 (1998).

T. Miyamoto and S. Kumagai : “Calculating Place
Capacity for Petri Nets Using Unfoldings”, Proc.
of Int. Conf. on Application of Concurrency to
System Design (CSD ’98), pp. 143-151 (1998).

M. Nakamura, Y. Kakuda and T. Kikuno : “An-
alyzing Non-determinism in Telecommunication

Services Using P-invariant of Petri-Net Model”,
Proc. of INFOCOM 97, pp.1253-1259 (1997).

L. Capra, G. Franceschinis, C. Dutheillet and J.
M. Ilie : “Towards Performance Analysis with
Partially Symmetrical SWN”, Proc. of 7th Int.
Symposium on Modeling, Analysis and Simulation

of Computer and Telecommunication Systems, pp.
148-155 (1998).

R. Gaeta : “Efficient Discrete-Event Simulation
of Colored Petri Nets”, IEEE Trans. on Software
FEngineering, Vol. 22, No. 9, pp. 629-639 (1996).

B. Grahlmann and H. Fleischhack :
Compositional Verification of SDL Systems”,
Proc. of 31st Hawait Int. Conf. on System Sci-
ences (HICS5S’98), pp. 404-414 (1998).

“Towards

K. Jensen and G. Rozenberg (eds.) : “High-level
Petri Nets. Theory and Application”, Springer-
Verlag, (1991).

CPN group at the University of Aarhus,
Denmark : “Design/CPN”, Ver. 4.0.4,
http://www.daimi.aau.dk/design CPN/

