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ABSTRACT
In this paper, we propose new middleware written in Java
based on an application level multicast protocol. This mid-
dleware is designed for multi-party video communication
systems such as video chatting systems where multiple
video streams are multicast simultaneously on overlay net-
works. The main contribution of our middleware is that it
provides two types of QoS control mechanisms on overlay
networks suitable for such an application. One is inter-
stream QoS control, which controls the number of video
streams on overlay links based on priority given to those
streams. Another is intra-stream QoS control which pro-
vides congestion control on each overlay link. Also, our
middleware has a quick recovery mechanism against end
hosts’ failure/leave. Our experimental results have shown
that our middleware could realize a video chatting applica-
tion without causing serious delay and jitter, which is con-
sidered inevitable in application level multicast protocols.
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1 Introduction

Recently, a new kind of communication paradigm which
realizes multicast communication in the application layer
(called ALM: Application-Level Multicast) has had much
attention, and a lot of researches for ALM have been pro-
posed [1, 2, 3, 4, 5, 6, 7, 8]. Our research group has also
proposed a new application level multicast protocol called
Emma (End-user Multicast for Multi-party Applications)
[9] suitable for communication systems where video data
are exchanged in real-time among end-hosts. In Emma,
multiple multicast streams on overlay networks are con-
trolled in a decentralized manner based on priority given
by users, in order to maximize the receivers’ satisfaction.

From the application developers’ viewpoints, applica-
tion level multicast is an attractive solution. However, those
developers are required to implement into each user appli-
cation various mechanisms for multicast routing, packet re-
laying, membership (join/leave) management and so on. In

particular, for video communication systems where multi-
ple video streams are exchanged among users, they have to
control multiple video streams which often compete with
each other for limited system resources such as end-to-end
bandwidth. Therefore, an infrastructure which undertakes
such control on behalf of applications facilitates the devel-
opment of multi-party video applications and also brings
them better performance.

In this paper, we propose new middleware based on
Emma protocol [9]. This middleware (called Emma mid-
dleware) is designed for multi-party video communica-
tion systems such as video chatting systems where mul-
tiple video streams are distributed simultaneously on over-
lay networks. Emma middleware consists of Java compo-
nents running on end-hosts. Those components maintain
overlay networks and multicast distribution trees, and relay
packets from hosts to hosts. Not only those basic function-
alities of application layer multicast, Emma middleware
provides two different levels of QoS. One is inter-stream
QoS control based on priority given to video streams. An
application user on Emma middleware is allowed to spec-
ify priority called a preference value to each video stream.
Then the dynamic preemption of bandwidth by the prior-
itized streams from the existing streams is carried out by
the cooperation of components on end hosts. Note that the
preemption can minimize the sum of the preference val-
ues given to the existing streams from which bandwidth is
preempted, i.e. the total loss of preference values in case
of preemption is optimal. Also intra-stream QoS control
is supported in Emma middleware. Intuitively, this means
rate control on each overlay link. If congestion is detected
on overlay links, the transmission rates of video streams
on the links are degraded at end-hosts which are forward-
ing the video streams. If the congestion still continues, the
inter-stream QoS control is activated, i.e., a stream with
lower priority is stopped to be delivered on the overlay link.
Finally, we would like to address that Emma middleware
has a quick recovery mechanism against end hosts’ fail-
ure/leave.

We have implemented a prototype application using
Emma middleware and evaluated its performance. The
experimental results have shown that each end-host could



play and forward several Motion JPEG video streams with
small delay and jitter, and that main functionalities of
Emma middleware such as QoS control and tree recovery
could be done in reasonable time.

2 Related Work

A lot of researches about ALM have been investigated so
far, and some of them have been implemented as middle-
ware. In Ref. [5], an application level multicast com-
munication library called ALMI has been implemented in
Java. ALMI supports both reliable communication and
datagram communication, and provides basic operations
for constructing and maintaining shared trees among end-
hosts. On the other hand, in Yoid (Your Own Inter-
net Distribution) Project [3] which promotes unification
of unicast/multicast communication and protocol stability,
wrapper scripts are provided as Yoid Software for Mbone
tools such as vic. The research group in Carnegie Mel-
lon University has developed ESM, a native code toolset
based on End System Multicast methodology[2]. This tool
was used for distributing live video in SIGCOMM2002
conference. HyperCast 2.0 is the Java implementation
based on two methodologies, HyperCast[7] and Delau-
nay Triangulation[8] and provides socket-like Java APIs.
RelayCast[10] is middleware to aim at adapting to various
applications that require different metrics (bandwidth, de-
lay or both), by component-based design and implementa-
tion.

Emma middleware is different from any of the above
approaches. Its main contribution is that it supports multi-
party video communication systems where multiple video
streams are exchanged and users priority should be con-
sidered. For such a purpose, not only providing basic func-
tionalities of application level multicast protocol, Emma
middleware also provides two different types of QoS as
stated in Section 1. To our best knowledge, none of the
other ALM middleware has considered such a functional-
ity. We believe that Emma middleware facilitates the de-
velopment of multi-party video applications and brings ap-
plication users better performance and satisfaction.

3 Basic Functionalities

In this section, the functionalities of Emma middleware are
explained briefly.

3.1 Join Management

We assume that there exists a server called a lobby server
which keeps and manages the profiles (IP addresses, port
numbers, node IDs, node affiliations etc.) of all the nodes
which have already joined a session. It also keeps the pro-
files of video sources (resolutions, rates, codecs and content
information etc.) sent by those nodes.

A node who wants to join a session first contacts the
lobby server to obtain the profiles of the existing nodes, and
also registers its own profile. After obtaining the profiles,
the new node measures RTTs between those nodes, selects
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Figure 1. Routing tree expansion by a new node on overlay
network.

a few nodes with the smaller delays, and then tries to estab-
lish overlay links (a TCP connection for control messages,
and a UDP virtual connection) with them. Consequently,
the overlay networks become mesh-like ones. Note that
at the time of establishment, an overlay link capacity (the
number of streams allowed on the overlay link) is negoti-
ated and determined between the end nodes of the overlay
link.

In order to avoid to handle too many video streams,
each node can specify the total sum of overlay link capac-
ities of all its own overlay links as capacity constraint, de-
pending on its own LAN interface bandwidth and machine
power. For example, a node on 10Mbps Ethernet may spec-
ify the capacity as 10 (or usually less) if each stream con-
sumes 1Mbps, since all the streams arriving at or through
the node are delivered via the LAN interface even if they
are delivered on different overlay links. In practice, this
value should be adequately small, considering overhead
and bandwidth outside LAN. The new node trying to es-
tablish overlay links negotiates with the peer nodes to de-
termine the capacity of overlay links within the capacity
constraints.

3.2 Routing Tree Construction

In Emma middleware, on an overlay network, a spanning
tree rooted at each node is used as a multicast routing tree,
and it is expanded whenever a new node joins the overlay
network. This expansion is done depending on the con-
straint of maximum delay (or hop count) from the root node
and overlay link capacities. Also message flooding is used
to construct a routing tree for the new node.

In Fig. 1, we show a snapshot of the tree construction
process when a new node joins a session. In Fig. 1(a), each
of nodes a, b, c and d has its own spanning tree as the rout-
ing tree. Now, let us suppose that node e joins the overlay
network by establishing overlay links to nodes c and d, and
that more than two hops from root nodes are not allowed
for the routing trees. Under this hop count constraint, node
e can select only link c-e to expand the nodes a and c’s
routing trees. Similarly, node e can select only link d-e to
expand the node b’s routing tree. Here, node e can select
either link c-e or d-e to expand node d’s routing tree. How-
ever, considering the link capacity, d-e is the better choice
since capacity competition is not likely to occur on d-e.
Fig. 1(b) shows the result of the above expansion. The
routing tree of node e is constructed by message flooding



and it is not shown in the figure.

3.3 QoS Control in Video Distribution

In Emma middleware, a node has a certain amount of pref-
erence values (integer values) and is allowed to assign the
amount to its receiving and requesting video streams by
dividing it into arbitrary portions. A preference value as-
signed to a video stream by a node means how strongly the
node wants to receive the video. The satisfied preference of
a node is the sum of the preference values given by the node
to its receiving streams. The goal of QoS control provided
by Emma middleware is to maximize the sum of satisfied
preferences of all the nodes in a session.

For this purpose, the inter-stream QoS control mecha-
nism tries to accept a request with a large preference value.
When a node u requests to receive node s’s video stream,
node u sends a request message toward node s. The mes-
sage is forwarded along the multicast routing tree of node
s, checking the capacity on each overlay link on the route.
When a message arrives at node s′ which has already re-
ceived node s’s video stream, node s ′ knows whether each
overlay link on the path from node s ′ to node u has a ca-
pacity to accommodate the requested stream. If so, node
s′ and the nodes on the route from node s ′ to node u start
forwarding node s’s video stream and node u can receive it.
This is a receiver-oriented normal join procedure. If there
is no extra link capacity, Emma middleware can determine,
during request message forwarding, whether the preference
value given to the requested stream is larger than the satis-
fied preference lost by preempting a capacity from the ex-
isting video streams or not. Moreover, in the former case,
the optimal preemption to minimize the loss can be calcu-
lated.

Also the intra-stream QoS control mechanism is pro-
vided for rate adaptation. Both QoS control mechanisms
are described in the next section.

3.4 Leave and Failure Management

In Emma middleware, when a node leaves a session or be-
comes silent (due to failure or ill mannered leave), overlay
networks and multicast trees are repaired so that satisfied
preference can be kept as high as possible. If a node u’s
leave is detected by neighbor nodes (each is denoted as v),
node v determines the nodes to which node v connects in
order to continue receiving video streams which had for-
merly been forwarded via node u. This process will also be
exemplified in the next section.

4 Middleware Design and QoS Support

We have designed and implemented Emma middleware in
Java (J2SDK 1.3.1 and Java Media Framework (JMF) 2.1).
Emma middleware consists of a host controller running on
each end host and a lobby server. The lobby server man-
ages node profiles. We do not discuss the detail design of
the lobby server in this paper since its functionality is not
essential and can easily be implemented (even by a web
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Figure 2. Host controller configuration.

server with CGI). In this section, we focus on the host con-
troller configuration. Moreover, two different types of QoS
control (inter- and intra-stream QoS control) are provided
by Emma middleware. They are also presented in this sec-
tion.

4.1 Host Controller

The configuration of the host controller is shown in Fig. 2.
Profile/policy management layer keeps and man-

ages (a) the policy of a session (e.g. delay constraints of
a routing tree, maximum of the preference values and so
on) and (b) the profiles of nodes and video sources (called
node profiles and media profiles). These are obtained from
the lobby server. The component of this layer monitors
the user’s behavior (such as requesting a new video) and
checks whether the behavior follows the session’s policy
or not. On receiving video streams, it uses the media pro-
files that indicate the parameters such as bit-rate, codec and
resolution.

Emma core layer is the core engine of Emma mid-
dleware. This layer manages overlay links and a multicast
routing table, by exchanging control messages explained
later. Especially, this layer provides the inter-stream QoS
control. The inter-stream QoS control is invoked by the
user’s video requests or the signaling from intra-stream
QoS control layer explained below, and decides which
streams should be stopped or newly delivered.

Intra-stream QoS control layer provides congestion
monitor and rate control on each overlay link. Emma mid-
dleware uses RTP/RTCP[11] for the quality management
of video streams. In JMF version 2.0 and later, RTP/RTCP
implementation is provided and a sender node can obtain
loss ratio at a receiver node by RTCP receiver reports.
Moreover in JMF, the streaming rate can be controlled by
the sender by allowing him/her to specify the ratio, called
a scaling ratio, to the original bitrate in motion JPEG (thus
1.0 means the original quality). We have implemented the
intra-stream QoS control layer to control this ratio dynami-
cally according to the loss ratio feedback from the receiver.

If the congestion lasts for a long time, and a scal-
ing ratio becomes lower than an allowable threshold, this
layer sends a signal to Emma core layer. Emma core



Table 1. Control message set.

type subtype src dst payload description

SES JoinRequest HC LB NProfile join a session
JoinReply HC LB NID, list of NProfile get NID and Nprofiles
Leave HC LB leave a session
DetectLeave HC LB notify unexpected leave
GetMemberList HC LB list of NProfile get Nprofiles
GetMediaProfileHC LB NID, MProfile get Mprofile
SetMediaProfile HC LB NID, MProfile set Mprofile

CTRL JoinRequest HC HC link cap. limit, RTT
JoinReply HC HC [Accept,Reject], (ne-

gotiated) link cap.
Leave HC HC leave a session
ReJoinRequest HC HC link cap. limit, RTT link reconstruction
ReJoinReply HC HC [Accept,Reject], (ne-

gotiated) link cap.
MEDIAJoinRequest HC HC NID, pref video request

JoinReply HC HC [Accept/Reject],
NID, UDP port

Keep HC HC NID, pref keep alive and pref col-
lection

Leave HC HC
Advertise HC HC NID, metric, seq routing tree construction
Reverse HC HC NID, seq add a link to a tree
Prune HC HC NID, seq do not add a link to a tree
ReJoinRequest HC HC NID for recovery of delivery
ReJoinReply HC HC [Accept/Reject],

NID, UDP port
HC=Host Controller, LB=LoBby server, NID=Node ID, NProfile=Node
Profile, MProfile=Media Profile, seq=sequence number, pref=preference
value

layer invokes inter-stream QoS control to reduce the num-
ber of streams on the congested overlay link, in order to
resolve congestion and keep the quality of the other impor-
tant streams.

4.2 Control Messages

We have defined a set of control messages as shown in Ta-
ble 1. Basically, we categorize those messages into three
types, according to their roles. The messages of type SES
are used for communication with the lobby server and those
of type CTRL are used for joining/leaving overlay net-
works. The messages of type MEDIA are related with video
stream delivery.

4.3 Examples: Inter-stream QoS Control
and Leave Management

Here, we show two scenarios for demonstrating inter-
stream QoS control and nodes’ leave management.

The first scenario (scenario 1) demonstrates inter-
stream QoS control. The topology of overlay network and
video distribution before executing this scenario is shown
in Fig. 3(a), and preference values given to video streams
Va, Vb and Vd are shown in Fig. 4(a). Note that dashed
and solid arrows represent routing trees and video streams,
respectively. Scenario 1 is as follows. Node c first requests
Va by using a MEDIA/JoinRequest message. This request
is forwarded to node b but rejected due to a smaller pref-
erence value. Note that there may be a case that a request
with a small value is acceptable if it is handled with its fol-
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Figure 3. Overlay network topology. Dashed lines rep-
resent routing trees and solid lines represent actual video
streams.

node Va Vb Vd

a – 7 x
b 5 – x
c (8) 5 2
d x 7 –
e 0 5 5
f (8) 3 x

node Va Vb Vd

a – 7 x
b 5 – x
c 8 [5] 2
d x 7 –
e 0 [5] 5
f 8 [3] x

(a) (b)
x=not received, (i)=requested with pref. value i,
[i]=decided to be stopped

Figure 4. Preference values in Fig. 3.

lowing requests of the same video stream by other nodes.
Therefore, in Emma middleware, to avoid frequent submis-
sion of request retries and to increase request acceptance
ratio, a rejected request is cached for a certain period at
each node. In this case, the request by node c was cached
at nodes b and e. Then node f requests Va. When the ME-
DIA/JoinRequest message arrives at node e, the request is
merged with node c’s one which had been cached at node e
and a new MEDIA/JoinRequest is forwarded to node b with
the merged preference value 16. As a result, node b can de-
termine whether Va is accepted or not, and in this case, it is
accepted since there is a way to keep a capacity with loss 13
by stopping Vb. This decision is informed to nodes c and
f through the intermediate node e by MEDIA/JoinReply
messages, and node e stops Vb and starts forwarding Va to
nodes c and f (Fig. 3(b) and Fig. 4(b)).

Scenario 2 considers the situation just after scenario
1. Node c is receiving two streams Va and Vd and node
f is receiving Va from node e, as shown in Fig. 3(b).
In this situation, node e leaves the session. Then nodes c
and f send CTRL/ReJoinRequest messages to nodes which
had forwarded those video streams to node e, in order to
establish new overlay links with them. On these overlay
links, routing trees are expanded in the way as we explained
in Section 3.2 using MEDIA/Advertise messages. Finally,
nodes c and f send MEDIA/ReJoinRequest in order to con-
tinue to receive Va and Vd. The result of this scenario is
shown in Fig. 3(c).



Figure 5. Sample application snapshot.

5 Experiments

Using Emma middleware, we have developed a simple
video-chatting system where Motion JPEG live video (via
USB video cameras) or stored video can be exchanged. A
snapshot of the system is shown in Fig. 5. This system was
used in the following two experiments.

Each host in Emma middleware, which may be a con-
sumer level’s PC, is required to forward and playback mul-
tiple video streams simultaneously as well as to manage
overlay networks. Here, the basic requirement for Emma
middleware is that each host can do such a forwarding
job without causing serious forwarding delay and jitter at
the host, even though all the programs are written in Java
which is considered to have a performance disadvantage
compared with the languages compiled to native codes such
as C. For the purpose, in the first experiment (experiment
1), we have measured forwarding delay and jitter at an end
host. Then, in the second experiment (experiment 2), we
have demonstrated two scenarios explained in Section 4.3,
(a) inter-stream QoS control and (b) nodes’ leave manage-
ment, in order to measure that they are done in reasonable
time.

The hosts used in the experiments are Windows 2000
PCs with PentiumII 400MHz CPU and 256MB memory.

5.1 Experiment 1 : Forwarding Delay and
Jitter at End Host

In Experiment 1, we have measured frame jitter and for-
warding delay at an end host. We have activated all the
functionalities in Emma middleware as well as video play-
out windows in the sample application.

The sample application was executed on the network
shown in Fig. 6(a) and the overlay network shown in Fig.
6(b) was constructed. We have let nodes a, b and d be
video senders. The measurement was carried out three
times, using different transmission rates’ Motion JPEG
video sources (1Mbps, 1.4Mbps and 2.4Mbps) of 23.8fps
(thus their frame sizes are 5.3KB, 7.5KB and 12.5KB, re-
spectively).
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Figure 6. Networks in experiment 1.
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Figure 7. Video packets and frames.

Since each JPEG frame is fragmented into UDP pack-
ets of 980bytes (this is due to RTP implementation in JMF),
we have measured the intervals between packets within a
frame (p int) and the intervals between the last packet of
a frame and the first packet of the next frame (f int) (see
Fig. 7). The measurement was done by tcpdump at node m
by monitoring video stream Vd incoming/outgoing through
node c. We have also measured the delay required at node
c to forward Vd. The results are as follows.

rate p int (ms) f int (ms) delay (ms)
(Mbps) in out in out ave. max

1.0 0.34 0.35 40.43 40.46 10.3 23.0
1.4 0.34 0.35 39.52 39.53 11.7 39.0
2.4 0.33 0.33 38.11 38.13 15.0 32.0

We can see that the increasing rates of the intervals
by node c’s forwarding are very small. Also, delays are
small enough compared with overlay link delay, which is
in general, the order of tens or hundreds of milliseconds.

From the results above, Emma middleware does not
cause serious delay and jitter even in a practical situation
where actual video streams are forwarded and played back
simultaneously.

5.2 Experiment 2: Emma Functionality
Demonstration

In experiment 2, we have used 6 PCs and have demon-
strated the two scenarios in Section 4.3. The underlying
network is shown in Fig. 8. Throughout the scenarios, we
have used video streams Va, Vb and Vd of 1.0Mbps.

The result of the execution of scenario 1 is shown in
Fig. 9. Again we briefly explain the scenario. The node c
first requested Va. This request was forwarded to node b but
rejected due to a smaller preference value. This request was
cached at nodes e and b. 2 seconds later, node f requested
Va. The request was merged at node e with the cached
request of node c and was forwarded to node b. As a result,
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Figure 9. Timing chart for scenario 1.

Vb was stopped and Va was started to be forwarded to nodes
c and f .

In this scenario, it took 12 seconds for node f to
start playing Va. Note that our current implementation of
Emma middleware uses the RTP implementation in JMF
for video transmission on each overlay link. Unfortunately,
this RTP implementation blocks other operations for 3 or
4 seconds until the establishment is completed. Consider-
ing this fact, inter-stream QoS control itself was done very
quickly. However, in order to shorten the response time for
such an application that needs quick response for a request,
we are now designing and implementing an original RTP
module that is more lightweight.

In scenario 2, node e in Fig. 3(b) left the session.
Then node c could continue to play Va and Vd and node
f could do Va as shown in Fig. 3(c). The timing chart is
shown in Fig. 10 where MEDIA/Advertise messages are
omitted to make the figure more readable. Here, after node
e’s leave, it took about 11 seconds for node f to receive Va

again. This was also largely affected by session initiation
time of RTP. The leave management process itself was done
quickly.

6 Conclusion

In this paper, we have presented Emma middleware for
multi-party video communication based on our applica-
tion level multicast protocol Emma (End-user Multicast for
Multi-part Application). Emma middleware has functional-
ities helpful for developing such an application where mul-
tiple real-time video streams are exchanged among users.

The current version of Emma middleware package
can be found in: http://www-tani.ist.osaka-u.
ac.jp/software/emma-e.html.

node b node c node e node f
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Figure 10. Timing chart for scenario 2.
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