
Protocol Synthesis from Time Petri Net Based Service Speci�cations

Hirozumi Yamaguchi Kozo Okano Teruo Higashino Kenichi Taniguchi

Department of Information and Computer Sciences

Osaka University

Machikaneyamacho 1-3 Toyonaka Osaka 560 JAPAN

Abstract

Some methods for deriving protocol speci�cations

from given service speci�cations with time constraints

have been proposed. However, existing methods cannot

treat the class of service speci�cations with both paral-

lel synchronization and data values. They also assume

that all clocks in the distributed system are synchro-

nized. In this paper, we propose an algorithm to de-

rive a correct protocol speci�cation automatically from

a given service speci�cation described in an extended

model of time Petri nets where the above restrictions

are eliminated. Using our method, we will be free from

considering the details of communication delays on the

design of real-time distributed systems.

1 Introduction

In general, for a distributed system, two di�erent

levels of abstraction can be considered. On a highly

abstracted level, a distributed system is treated as one

protocol entity (one node). On the other hand, it is

treated as a set of protocol entities on an implemen-

tation level. Speci�cations at the former and latter

levels are called a service speci�cation and a protocol

speci�cation, respectively. A protocol speci�cation is

a set of protocol entities' speci�cations (protocol entity

speci�cations).

Figure 1 shows examples of a service speci�cation

and a protocol speci�cation. The service speci�cation

is described as the actions (e.g. \a", \b" and \c")

and their execution order (e.g. \a" and \b" can be

executed in parallel and \c" must be executed after

their execution). The protocol speci�cation consists

of three protocol entity speci�cations. For example,

the protocol entity #1's speci�cation is described as

the action \a", a communicating action (sending a no-

ti�cation of the action a's completion to the protocol

entity #3) and their execution order. Both speci�ca-

tions provide the same services at the Service Access

Points (SAP's) \a", \b" and \c". However, only the

protocol speci�cation contains communicating actions

among protocol entities.

Although a protocol speci�cation is necessary for

implementation, it is complex and troublesome to

describe it because communications among protocol

entities must be speci�ed. Thus, some approaches

for synthesizing a protocol speci�cation automatically

from a given service speci�cation has been proposed

[3, 4, 5, 8](see [2] for survey).

However, those approaches are not su�cient for

real-time distributed systems since they do not con-

sider the urgency of services (time constraints). For

example, in Fig. 1, the time constraint \the action

\c" must be executed between 3 and 10 units of time

after both \a" and \b" are executed" is given. Here,

we don't assume that there exist synchronous clocks

among the protocol entities. Also we assume that

there are communication delays from the protocol en-

tity (PE) #1 to PE #3 (2 and 4 units of time at the

shortest and longest, respectively) and from PE #2

to PE #3 (1 and 3 units of time at the shortest and

longest, respectively). In this case, PE #3 can only

know that at least 1 unit of time has passed after both

\a" and \b" were executed, and that at most 4 units of

time have passed. Therefore, even if the noti�cation

messages are sent immediately after the actions \a"

and \b" are executed, the action \c" must be executed

between 2 and 6 units of time (e.g. [2, 6]) after those
messages are received by PE #3 in order to guarantee

the time constraint [3, 10] of the service speci�cation.
It is more complex and troublesome to decide suitable

time constraints at the level of protocol speci�cations

under the presence of communication delays, satisfy-

ing the time constraints of service speci�cations.

For service speci�cations with time constraints, a

timed automaton based approach in [6] and a timed

LOTOS based approach in [7] have been proposed. Al-

though these approaches can handle service speci�ca-

tions with time constraints between non-successive ac-

tions, they assume the existence of synchronous clocks

in the distributed environment and cannot treat par-

c

SAP’s

(a) Service Specification

b

c

a

SAP’s a bProtocol
Entity #1

2-4

[3, 10]

Protocol
Entity #2

Protocol
Entity #3

a send Message
 >#3 b send Message

 >#3 c
[2, 6]receive Message

receive Message

(b) Protocol Specification

ca b

1-3

Figure 1: Service Speci�cation and Protocol Speci�-

cation.

allel synchronization in service speci�cations. In ad-

dition, the system's state variables (parameters) are

not considered although most systems have state vari-

ables. These are restrictions for practical real-time

applications.

In this paper, we propose a method for deriving a

protocol speci�cation from (a) a service speci�cation

written in an extended model of time Petri nets [1],

(b) a resource allocation and (c) maximum/minimum

communication delays among protocol entities. The

extended model is called a Time Petri Net model with

Registers (TPNR model in short) where state variables

can be treated. A resource allocation speci�es an allo-

cation of SAP's (communication ports) and state vari-

ables to protocol entities. The derived protocol spec-

i�cation satis�es the time constraints in the service

speci�cation.

For any pair of actions which are time-dependent

of each other, they are described as successive actions

explicitly in TPNR model. Therefore, only by esti-

mating the time when a previous action is executed

from the minimum/maximum communication delays

for each received message, we can propose a new syn-

thesis technique on a distributed environment where

synchronous clocks are not available.

2 Speci�cations
2.1 Our Model

We extend time Petri nets (TPN) so that we can

formalize I/O's and calculation of state variables.

TPNR model has a �nite number of I/O gates and

a �nite number of registers. The I/O gates represent

I/O ports from/to external environments, and the reg-

isters represent systems' state variables. A pair of an

I/O event and a set of substitution statements of regis-

ters can be speci�ed as the action of a transition. The

formal de�nition of TPNR model is shown in [10].

Intuitively, the behavior of a transition t is as

follows. Suppose that the transition t has a label

h R2 > R1; a?x; \R1 R2+x; R2 R1+R2+x" i
and a time constraint [3, 5] (Fig. 2).

a ? x

R1 <- R2 + x
R2 <- R1 + R2 + x

R2 > R1

[3, 5]

Figure 2: TPNR Model.
Assume that the current values of registers \R1"

and \R2" are 1 and 2, respectively. If each input place

of t has at least one token at time T , the value of the

guard expression (condition) \R2 > R1" is checked.

Since it is true in this case, it becomes enabled at time

T . The transition t must �re between times T +3 and

T+5 unless it becomes disabled by time T+5. If t �res,

the I/O event \a?x" is executed (suppose that the

input value is 3), and then the substitution statements

\R1 R2 + x; R2 R1 + R2 + x" are executed in

parallel. In this case, the new values of \R1" and

\R2" are calculated as 5 (= 2+3) and 6 (= 1+2+3),

respectively and stored. Then the marking is changed

to new one.

2.2 Service Speci�cation

Figure 3(a) shows a service speci�cation of an ex-

ample protocol sub-layer in TPNR model. Hereafter

we denote the service speci�cation by Sspec.

The example is a simple connection management

sub-layer, which may be a typical example using state

variables. It communicates with its upper sub-layer,

which consists of three processes A (request process),

B (network observation process) and C (connection

policing process), via I/O gates a, b and c. It has a

topology table (register R4). Registers R1, R2 and R3

are used as temporary bu�ers.

The sub-layer �rst receives a connection request

(the value of input variable x) from process A (via I/O

gate a) and stores it to R1 (request bu�er). Then it

gets the current network tra�c information (the value

of input variable y) from process B (via I/O gate b)

and calculates a route using its topology table (R4),

the request (R1) and the network tra�c information

(y). Then the calculated route is stored to R3 (route

info. bu�er). It also receives an acknowledgment for

g12 g21 g23 g32g13 g31

Communication Channels

(b)

b c

(a)

a ? x

b ? y

c ? z

a ! R2, R3

R1 <x

R3 < calc_route(R4, R1, y)

[3, 7]

[0, 5]

[4, 6]

[3, 8]

R1

t2

t3

t4t1

Req(x)

a
request result

Process A Process B Process C

traffic info Ack/Nack

Request
Buffer R2 Route Info.

BufferR3Ack/Nack
Buffur

R2 < z

R4 Topology
Table

3 4 1 4
1 3 2 3

1 30 1

a b c

Protocol
Entity #1

Protocol
Entity #2

Protocol
Entity #3

Process A Process B Process C

R1 R3 R4R2

Figure 3: (a) Service Speci�cation of Protocol Sub-layer. (b) Protocol Entities.

the request (Ack or Nack, the value of input variable

z) from process C (via I/O gate c) and stores it to

R2 (Ack/Nack bu�er). After those, it passes a pair of

the acknowledgment and the route to process A. In

all the �gures in this paper, guard expressions whose

values are identically \true" and empty substitution

statements of registers are omitted. \calc route" is

a user-de�ned function.

In this paper, we assume the following restrictions

for service speci�cations.

[Restriction 1] The Petri net of Sspec must be a

live and safe free-choice net [1].

[Restriction 2] There may be two transitions ti and

tj which can �re in parallel in Sspec. For a register

R, if the value of R is substituted in both ti and tj

simultaneously, or if the value of R is substituted in ti

and it is referred in tj , we call such a case a register

conict. Sspec must not include any register conict.

[Restriction 3] Sspec contains no internal events (it

is not an essential restriction). 2

A Petri net is a free-choice (FC) net if, for any

pair of transitions which share an input place p, they

do not have other input places except p. A live and

safe Petri net is deadlock-free and overow-free. In

a FC net, the decision which side of transitions �res

in each choice structure is done only by a token in

the input place p. Restriction 1 simpli�es the control

ow of Sspec, and therefore simpli�es the derivation

algorithm1. The reason to assume Restriction 2 is to

avoid register conict problems [8].

2.3 Protocol Speci�cation

On the protocol level, the services are provided by

p protocol entities. We assume that the example sub-

layer consists of three protocol entities #1, #2 and #3

1For a given free-choice net, there exist polynomial algo-
rithms for safeness (boundness) and liveness problems [9].

(see Fig. 3(b)). Each protocol entity #k (denoted by

PEk) has some of I/O gates and registers and manages

them independently of the other protocol entities. For

any pair of PEi and PEj (i 6= j), we assume that there

is a full duplex communication channel. The port on

the side of PEi (PEj) of the communication channel is

called gate gij (gji). We assume that each communica-

tion channel is su�ciently reliable and that the max-

imum/minimum communication delays are bounded

by constant values. We can specify a resource allo-

cation (denoted by Alloc(Sspec)) which allocates the

I/O gates and registers to protocol entities. We can

also specify maximum/minimum communication de-

lays from PEi to PEj (denoted by Dmaxij/Dminij).

These are shown in Fig. 3(b). Here, we assume the

following restriction for Sspec and Alloc(Sspec).

[Restriction 4] For any pair of transitions ti and

tj which share an input place p in Sspec, their I/O

gates must be allocated to one protocol entity in

Alloc(Sspec). 2

Restriction 4 prohibits distributed choice.

Hereafter, we denote the protocol entity speci�ca-

tion of PEk by Pspeck, and the set of p protocol entity

speci�cations by Pspec
h1;pi. Pspec

h1;pi is a protocol

speci�cation, and Pspec
h1;3i in Fig. 4 is an example

of a protocol speci�cation.

The protocol entities communicate with each other

by exchanging messages in order to provide the same

behavior in Sspec. For example, PE1 executes the I/O

event \a?x" of t1 (since PE1 has the I/O gate a) and

sends two messages to PE2 and PE3 for notifying the

completion of the I/O event execution. The messages

\Mn1:12" and \Mn1:13" are sent to PE2 and PE3 via

I/O gates g12 and g13, respectively. PE2 and PE3 re-

ceive these messages and then execute the I/O events

of the next transitions t2 and t3, that is, \b?y" and

3 4 1 4
1 3 2 3

1 30 1

Communication Channels

g13 !Mn1.13{ }

g12 !Mn1.12{ }

g13 ?w
ID(w)==
Mr2.31

ID(w)==
Mn3.31

g31?w

g21?w

a !R2, Tmp1.R3a?x

g31 !Mr2.31{R3}

[0, 5]

g31?w
ID(w)==
Mr1.13

Tmp3.R1<w.R1

c?z
ID(w)==
Mn1.13

Tmp3.y<w.y

ID(w)==
Mi2.23

g32 ?w

g31 ?w

R1 R3 R4

[4, 4]
[3, 3]

[0, 0]

Process A

a b c

Process B Process C

ID(w)==
Mn2.211t

2t

3t

4t 1t 4t

g31 !Mn3.31{ }

g23 !Mi2.23
 {Tmp2.y}

Tmp2.y<y

g21 ?w

[0, 3]

1t

g21 !Mn2.21{ }
b?y

2t

ID(w)==
Mn1.12

R2

R1<Tmp1.x

[0, 2]
g13!Mr1.13{R1}

g31 !Mi3.31{Tmp3.z}

Tmp3.z<z

Tmp1.z<w.z

ID(w)==
Mi3.31

g13 ?w [0, 0]

R2<Tmp1.z

MAIN1 MAIN2

MAIN3

Tmp1.x<x

Tmp1 Tmp2 Tmp3

Tmp1.R3<w.R3 R3<calc_route
 (R4, Tmp3.R1,Tmp3.y)

g12g13 g21 g23 g32 g31

Figure 4: Protocol Speci�cation of the Sub-layer.

\c?z", respectively. On the other hand, PE1 executes

the substitution statement of register R1 (since PE1

has register R1) using the value of input variable x

and sends the message to transfer the latest value of

the register. The message \Mr1:13" is sent to PE3 to

transfer the value of R1. PE3 receives the message and

stores the received value as the latest value of R1 to its

local temporary register, Tmp3
2. This value is used

to execute the substitution statement of register R3

(See Fig. 4 to �nd Tmp3:R1 in the second argument

of the substitution statement). In Fig. 4, for simplic-

ity, we assume that sending/receiving transitions can

be executed immediately. So, the time constraints of

all the sending/receiving transitions (represented by

white rectangles) are [0, 0], and they are omitted3.

3 Derivation Problem

In this section, we formally de�ne the derivation

problem treated in this paper.

Suppose that all I/O events executed on the I/O

gates used in Sspec are treated as observable, and that

all sending/receiving events on the I/O gates for com-

munication among protocol entities (such as \gij?x"

and \gij !E(: : :)") and internal events (\i") are treated

as unobservable. If all the observable I/O event se-

quences (including a time interval between each pair

of successive I/O events in the sequences) in Sspec can

be observed in Pspec
h1;pi and vice versa, we say that

Sspec and Pspec
h1;pi are equivalent.

2We assume that each PEk has a local temporary register
Tmpk to keep the latest received value of registers and input
variables. Tmpk:Rq (Tmpk:x) denotes such a value of register
Rq (input variable x).

3We can easily extended our method for treating the case

that it takes some units of time to execute sending/receiving
transitions (See Section 5).

It is ideal that for any given Sspec, Pspech1;pi which

is equivalent to Sspec can be derived. However, con-

sidering communication delays, for almost cases such

a derivation is impossible. For example, suppose that

there is an I/O event sequence \a; b" in Sspec and the

time constraint of b is [3, 6]. In Pspec
h1;pi, also sup-

pose that PE1 and PE2 have the I/O gates a and b, re-

spectively and Dmin12 and Dmax12 are 4 and 5 units

of time, respectively. PE2 must know that the action

a has been executed in PE1, therefore PE1 sends a

message after the execution of the action a. PE2 re-

ceives the message and executes the action b. If the

message arrives at PE2 in the shortest delay (4 units

of time), the action b can be executed immediately af-

ter receiving the message. On the other hand, if the

message arrives at PE2 in the longest delay (5 units

of time), the action b must be executed within 1 unit

of time after receiving the message. As a result, the

time constraint [3, 6] of the action b in Sspec should

be modi�ed to [4, 6] (=[Dmin12+0, Dmax12+1]) in

Pspec
h1;pi. In this case, although Pspec

h1;pi satis�es

the time constraint of Sspec, it is not equivalent to

Sspec.

Here, considering the case like the above, we de�ne

the correctness of Pspech1;pi w.r.t. Sspec as follows.

Suppose a speci�cation denoted by Sspec
0 which is

obtained from Sspec by narrowing time constraints

of some transitions in Sspec. We say that Pspech1;pi

is correct w.r.t. Sspec if, there exists Sspec
0 where

(A) Sspec0 and Pspec
h1;pi are equivalent and (B) se-

lectable transitions in Sspec can be also selectable in

Pspec
h1;pi. The condition (A) means that if the time

constraints in Pspec
h1;pi are narrowed due to commu-

nication delays, Pspech1;pi is correct as far as their

time constraints are within those in Sspec like the

[4, 9] [3, 5] [6, 9]

(a) (b)

a b a b
[3, 7] [3, 5]

(c)

a b
[3, 5]

b c
[3, 5]

Figure 5: Narrowing Time Constraints in a Choice.

above case. However, narrowing time constraints may

change selectability in a choice structure. In the spec-

i�cation in Fig. 5(a), both actions a and b can be

executed. On the other hand, in the speci�cation in

Fig. 5(b), which is time-narrowed speci�cation in Fig.

5(a), the action b cannot be executed according to

the �ring rule of TPN (the action a MUST be exe-

cuted within 5 units of time). That is, the action b

is a \dead " (unexecutable) transition. The condition

(B) is used to prevent \dead" transitions appeared in

Pspec
h1;pi. Note that in a choice structure as shown

in Fig. 5(c) which is not a free-choice net, checking

the selectability is di�cult, since it depends on time

when two independent tokens come into the places. In

our method, we restrict the class of the Petri net of a

service speci�cation to a free-choice net (See Restric-

tion 1 in Section 2.2). Free-choice nets have a sim-

ple choice structure where input places are at most 1.

It facilitates to guarantee the correctness of derived

Pspec
h1;pi, which will be discussed in Section 4.2.

In this paper, we treat a problem to derive a correct

Pspec
h1;pi from a given tuple of Sspec, Alloc(Sspec)

andDminij/Dmaxij for each communication channel

where Restrictions 1, 2, 3 and 4 hold.

4 Algorithm

Our algorithm consists of two steps : (1) deriving

each protocol entity speci�cation without time con-

straints from Sspec according to a simulation policy,

and then (2) deciding its time constraints.

4.1 Deriving Nets

At the step (1), from the given Sspec and

Alloc(Sspec), the actions and their execution order at

each protocol entity are decided uniquely based on the

following simulation policy (e.g. PE1 executes the I/O

event \a?x" of t1, and then sends messages \Mn1:12"

and \Mn1:13"). According to the policy, Pspech1;pi

without time constraints are constructed.

[Simulation Policy]
(a) For each tj in Sspec, the protocol entity which

has the I/O gate of the I/O event of tj executes the

I/O event. Such a protocol entity is called a respon-

sible protocol entity of tj and denoted by RPE(tj).

RPE(tj) receives messages from all of the protocol en-

tities, each of which has executed the I/O event of a

previous transition of tj. These messages are called

I/O completion noti�cation messages. Also RPE(tj)

sends a message to each protocol entity which executes

the substitution statement for a register Rq of tj. This

is explained in (b).

(b) Each protocol entity executes the substitution

statement for a register Rq of tj if it has the regis-

ter Rq . If it receives a message (called an input value

transfer message), which includes the value of input

variables, from RPE(tj), then it calculates the new

value of the register and stores it to Rq . Then it sends

the new value in advance to all protocol entities which

may need it to execute future I/O events and sub-

stitution statements of registers, or to evaluate guard

expressions of future transitions. These messages are

called register value transfer messages.

In Fig. 4, the components MAIN-1, MAIN-2 and

MAIN-3 are derived according to the policy (a). Each

of the components is derived by replacing a transition

in Sspec with a subnet. For example, PE2 and PE3 ex-

ecute the I/O events of t2 and t3 (\b?y" and \c?z") and

send I/O completion noti�cation messages \Mn2:21"

and \Mn3:31"
4 to PE1, respectively. In this case, in

PE2, the transition t2 in Sspec is replaced by a subnet

which has two transitions. One executes the I/O event

of t2 and the another sends the message \Mn2:21" af-

ter that. PE1 can know that the execution of the I/O

events of t2 and t3 has been �nished. The rest of the

components in Fig. 4 are derived according to the

policy (b). They are derived by adding some transi-

tions or sub-nets. PE2 sends an input value transfer

message \Mi2:23" to PE3, which includes the value of

input variable y. In this case, a transition sending the

message \Mi2:23" is added to the net MAIN-2 in PE2.

PE3 receives the message, calculates the new value of

R3, and sends PE1 the register value transfer message

\Mr2:31", which includes the new value of R3. Also

in this case, in PE3, the net which is a sequence of

three transitions (a receiving transition, a transition

executing the substitution statement and a sending

transition) is added. PE1 receives the message and it

can know the latest value of R3, which is necessary for

executing the I/O event of t4. PE1 has a transition

receiving the message which forms a self-loop.

4.2 Deciding Time Constraints

At the step (2), time constraints of Pspech1;pi are

decided. In Pspec
h1;pi derived at the step (1), only

4A message ID is de�ned as \Mti:xy", where t is its message
type (n, i and r denote I/O completion noti�cation, input value
transfer and register value transfer, respectively), i is the tran-

sition name concerned with the message, and #x/#y are the
source/destination protocol entities, respectively.

[For Condition (a)]

� For each pair of a transition tj and its previous transition ti :

ETmin(tj) � ETmax(tj) (1)

Eft(tj) � Dminuv +ETmin(tj) � Dmaxuv + ETmax(tj) � Lft(tj) (2)

where we assume that RPE(ti) and RPE(tj) are protocol entities #u and #v, respectively.

[For Condition (b)]

� For each transition tj in Sspec and each register Rq whose value is substituted in tj :

RTmin(Rq; tj) � RTmax(Rq; tj) (3)

� For each transition ti in Sspec and each register Rq whose value is substituted in ti, suppose that the new value
of Rq is used for the execution of the I/O event of a future transition tj in Sspec. Assume that RPE(ti) and
RPE(tj) are protocol entities #u and #w respectively, and that a protocol entity #v has the register Rq. Then
the following must hold :

min seq(ti; tj)h � Dmaxuv + RTmax(Rq ; ti) +Dmaxvw (4)

where each min seq(ti; tj)h (h = 1; 2; :::; r) is the minimum time from the I/O event of ti has been executed to

the I/O event of tj becomes executable in Pspec
h1;pi (the minimum execution time of I/O event sequences in

Pspec
h1;pi).

[For Condition (c)]

� For each pair of transitions tja and tjb which share an input place p and a transition ti which has p as an output
place, assume that RPE(ti) is a protocol entity #u and RPE(tja) and RPE(tjb) are the same protocol entity #v
(See Restriction 4 in Section 2.3). If Eft(tja) � Lft(tjb) and Eft(tjb) � Lft(tja) hold:

ETmin(tja) � ETmax(tjb)

ETmin(tjb) � ETmax(tja) (5)

[Objective Function]

OBJ =
X

ti

(ETmax(ti)� ETmin(ti)) +
X

Rq

X

tj

(RTmax(Rq ; tj)� RTmin(Rq; tj))

Figure 6: Integer Linear Inequalities and Objective Function.

the execution order of the I/O events in Sspec is im-

plemented by exchanging I/O completion noti�cation

messages. Therefore, in order to obtain a correct

Pspec
h1;pi, the following three issues must be guar-

anteed at the step (2).

(a) Each time interval between a pair of successive I/O

events in Pspec
h1;pi must satisfy that in Sspec.

(b) The input/output values of I/O event sequences

in Pspech1;pi must be equivalent to those in Sspec. In

our simulation policy in Section 4.1, the execution of

an I/O event which needs the latest value of a regis-

ter does not wait for the arrival of the register value

transfer message (as a result, the I/O event may be

executed with an old value). Therefore, we need guar-

antee that each register value transfer message has al-

ways arrived before the I/O event becomes executable.

(c) Considering the case discussed in Section 3, se-

lectable transitions in each choice structure in Sspec

must be also selectable in Pspec
h1;pi. 2

However, since there are message delays, such time

constraints of Pspech1;pi that satisfy all the above (a),

(b) and (c) may not exist. For example, the message

\Mr3:31" includes the value of R3 necessary for the ex-

ecution of the I/O event of t4 in PE1. Although it is

sent immediately after the execution of the substitu-

tion statement of R3, it may not arrive at PE1 in time

(therefore, it may not be able to satisfy the condition

(b)). On the other hand, if we delay the earliest exe-

cutable time of the I/O event of t4, the message may

be able to arrive at PE1 before I/O event of t4 becomes

executable.

At the step (2), the time constraints of Pspech1;pi

derived at the step (1) are represented by some non-

negative integer variables and the conditions (a), (b)

and (c) are represented as integer linear inequalities

over those variables. If there exists a solution which

1 4

g21?w

a !R2,Tmp.R3

[ETmin(t4), ETmax(t4)]

b

ID(w)==
Mn2.21

2t

4t Tmp.y<y

g21 !Mn2.21{ }
b?y

2t

g12 g21

Communication Channels

a

1 4

g21?w

[ETmin(t4), ETmax(t4)]

Process A

b

Process B

ID(w)==
Mn2.21

2t

4t Tmp2.y<y

g21 !Mn2.21{ }
b?y

2t

g12 g21

Communication Channels

a
Protocol Entity #1

Process BProcess A

Protocol Entity #2

g13 ?w
ID(w)==
Mr2.31

Tmp1.R3<w.R3

[0, 0]

R3

g31 !Mr2.31{R3}

Tmp3.y<w.y

ID(w)==
Mi2.23

g32 ?w

R3<calc_route
 (R4, Tmp3.R1,Tmp3.y)

[RTmin(R3,t2),
 RTmax(R3,t2)]

g23 g32 g310 1

2 3

g13

Process C

c
Protocol Entity #1 Protocol Entity #2 Protocol Entity #3

(a) (b)

a !R2,Tmp1.R3

R1 R2 R4Tmp1 Tmp3Tmp2

g23 !Mn2.21{Tmp2.y}

Figure 7: Example.

satis�es all of the inequalities, the time constraints of

Pspec
h1;pi satisfy the above conditions (a), (b) and (c).

Using a procedure to solve integer linear programming

problems, a solution can be obtained where the total

sum of time ranges of time constraints in Pspec
h1;pi is

maximized.

[Introduced Variables]
� For each transition in Pspec

h1;pi executing the I/O

event of ti, we introduce two non-negative integer

variables, and represent the time constraint of the

transition as [ETmin(ti), ETmax(ti)]. ETmin(ti)

andETmax(ti) represent the minimum and maximum

time from the time when it receives all the I/O comple-

tion noti�cation messages to the time when it executes

the I/O event of ti, respectively.

� For each transition in Pspec
h1;pi executing the

substitution statement of register Rq in ti, we also

introduce two non-negative integer variables, and

represent the time constraint of the transition as

[RTmin(Rq; ti), RTmax(Rq ; ti)]. RTmin(Rq; ti) and

RTmax(Rq; ti) represent the minimum and maximum

time from the time when it receives the input value

transfer message to the time when it calculates the

new value of Rq , respectively.

� We assume that the time constraint of each send-

ing/receiving transition is [0, 0]. That is, we assume

every sending/receiving event is executed immediately

after it becomes executable, as explained in Section

2.3.

[Integer Linear Inequalities]

Fig. 6 shows integer linear inequalities over the

above variables to guarantee the conditions (a), (b)

and (c).

For the condition (a), two types of inequalities are

given. Inequality (1) is obviously necessary from the

de�nition of those variables. Inequality (2) guarantees

that even if there is the delay of an I/O completion no-

ti�cation message between two successive I/O events,

the time interval between the I/O events in Pspec
h1;pi

must be within that in Sspec.

For the condition (b), two types of inequalities are

also given. Inequality (3) is also necessary from the

de�nition of those variables like Inequality (1). In-

equality (4) guarantees that the new value of Rq neces-

sary for the execution of an I/O event of tj must arrive

at PEw before the I/O event becomes executable. We

consider the time when the I/O event of ti has been

executed as the base time (denoted by T). The earli-

est time when the I/O event of tj becomes executable

can be represented as T +min sequence(ti; tj)h (h =

1; 2; :::; r). On the other hand, the latest time when

the value of Rq arrives at PEw can be represented as

T +Dmaxuv +RTmax(Rq; ti) +Dmaxvw. Therefore

if Inequality (4) holds, the new value of Rq necessary

for the execution of an I/O event of tj is in time for

the executable time of the I/O event of tj . This is the

main idea of the register value transfer.

For the condition (c), Inequality (5) is given.

Eft(tja) � Lft(tjb) and Eft(tjb) � Lft(tja) represent

that both tja and tjb are selectable in Sspec. Inequal-

ity (5) represents the condition to guarantee that tja
and tjb are selectable in Pspec

h1;pi.

Finally, we get a solution which satis�es all of the

inequalities (1) - (5) using a procedure for solving

integer linear programming problems. If such a so-

lution exists, we regard that the time constraints in

Sspec also hold in Pspec
h1;pi. Here, we would like to

get elastic time constraints whose ranges are possibly

wide (this is our evaluation basis for optimization).

Therefore, we represent the total sum of the range of

time constraints in Pspech1;pi as the objective function

OBJ , where the �rst and second terms represent the

time range of the I/O events and the register value

substitutions, respectively. Then we get an optimal

solution to maximize the objective function OBJ .

In general, it may take much time to solve integer

linear programming problems. However, since coe�-

cients of the inequalities in Fig. 6 are all \1" and the

maximum/minimum communication delays are inte-

gers, our experience shows that, in most cases, the

solution can be derived using a procedure to solve lin-

ear programming problems such as simplex method.

And the simplex method can generate a solution very

e�ciently in most cases.

4.2.1 Example

For the transition executing the I/O event of t4 and
one of its previous transitions t2, the following inequal-
ities must hold according to Inequalities (1) and (2)
(see Fig. 7(a)) :

ETmin(t4) � ETmax(t4)

Eft(t4) � Dmin21 + ETmin(t4)

� Dmax21 + ETmax(t4)

� Lft(t4):

That is,

2 � ETmin(t4) � ETmax(t4) � 4:

Moreover, for transition t2 and register R3, the cal-

culated value of R3 is used for the I/O event of t4.

Therefore, according to Inequality (4), the following

inequality must hold (see Fig. 7(b)) :

min seq(t2; t4)1 � Dmax23+RTmax(R3; t2)+Dmax31:

Here, min seq(t2; t4)1 = Dmin21 + ETmin(t4). The

left-side expression represents the earliest time when

the I/O event of t4 becomes executable, from the time

T (when the I/O event of t2 has been executed). On

the other hand, the right-side expression represents

the latest time when the register value transfer mes-

sage \Mr2:31" arrives at PE1, from the same time T .

The inequality can be transformed to :

ETmin(t4)�RTmax(R3; t2) � 3:

Of course, inequalities for the other transitions are

needed.

5 Conclusion

In this paper, we have proposed a method to de-

rive a correct protocol speci�cation from a given ser-

vice speci�cation in TPNR model, a resource alloca-

tion and maximum/minimum communication delays

among protocol entities.

For practical use, many system-speci�c things must

be considered. For example, in distributed real-time

databases, data with large capacity may be treated.

Therefore the execution time of actions, such as the

retrieval time of data, may not seem to be zero, while

we assume it is zero in our method. In order to treat

such a case, we only change Inequality (4) in Fig. 6

to :

min seq(ti; tj)h > Dmaxuv +RTmax(Rq; ti)

+max exec(Rq; ti) +Dmaxvw

where max exec(Rq; ti) represents the maximum exe-

cution time of the substitution statement of Rq. Our

concept itself can be applied to many real-time dis-

tributed systems by slightly modifying the inequalities

in Fig. 6, even though there are some system-speci�c

aspects practically.

References
[1] Murata, T. : \Petri Nets: Properties, Analysis and

Applications," Proc. of the IEEE, Vol. 77, No. 4, pp.
541-580, 1989.

[2] Saleh, K. : \Synthesis of Communication Protocols:

an Annotated Bibliography," ACM SIGCOMM Com-

puter Communication Review, Vol. 26, No. 5, pp. 40-
59, 1996.

[3] Chu, P.-Y.M. and Liu, M.T. : \Protocol Synthesis in
a State-Transition Model," Proc. of the COMPSAC

'88, pp. 505-512, 1988.

[4] Chao, D. Y. and Wang, D. T. : \A Synthesis Tech-

nique of General Petri Nets," Journal of System In-

tegration, Vol. 4, pp. 67-102, 1994.

[5] Kant, C., Higashino, T. and Bochmann, G. v. : \De-

riving Protocol Speci�cations from Service Speci�-

cations Written in LOTOS," Distributed Computing,

Vol. 10, No. 1, pp. 29-47, 1996.

[6] Khoumsi, A., Bochmann, G.v. and Dssouli, R. :
\On Specifying Services and Synthesizing Protocols

for Real-time Applications," Proc. of the 14th IFIP

WG6.1 Symp. on Protocol Speci�cation, Testing and
Veri�cation (PSTV-XIV), pp.185-200, 1994.

[7] Nakata, A., Higashino, T. and Taniguchi, K. : \Pro-
tocol Synthesis from Timed and Structured Speci�ca-

tions," Proc. of the Int. Conf. on Network Protocols

(ICNP'95), pp. 74-81, 1995.

[8] Yamaguchi, H., Okano, K., Higashino, T. and
Taniguchi, K. : \Synthesis of Protocol Entities' Spec-

i�cations from Service Speci�cations in a Petri Net

Model with Registers," Proc. of the 15th Int. Conf.

on Distributed Computing Systems (ICDCS-15), pp.

510-517, 1995.

[9] P. Kemper and F. Bause : \An E�cient Polynomial-

Time Algorithm to Decide Liveness and Boundedness
of Free-Choice Nets," Proc. of the Int. Conf. on Ap-

plication and Theory of Petri Nets 1992, LNCS Vol.

616, pp. 263-278, 1992.

[10] Yamaguchi, H., Okano, K., Higashino, T. and

Taniguchi, K. : \Protocol Synthesis from Time Petri
Net Based Service Speci�cations," I.C.S Research Re-

port, 97-ICS-2, 1997.

