Protocol Synthesis from SMIL-Based Scenarios
and Its Implementation in Distributed Environment

Takaaki Umeduf, Hirozumi Yamaguchif,
Keiichi Yasumoto'™ and Teruo Higashino!

7 Dept. Info. and Math. Sci., Osaka Univ., Japan
i1 Fac. of Economics, Shiga Univ., Japan

Abstract

In order to design and develop multi-user mul-
timedia presentation systems, we propose a proto-
col synthesis method considering QoS requirements
for networks. In this method, the scenario of each
entity (node) is specified in a SMIL-like language.
A spectfication of the total system (service specifi-
cation) is described as a set of all users’ SMIL-like
scenartos and control scenarios specifying the inter-
action between entities. For a given service specifi-
cation, network topology, link capacity and required
bandwidth for each media-object, a set of protocol
entity specifications (protocol specification) is auto-
matically derived. The derived protocol entity spec-
ification includes (1) the behavior of each node, (2)
communication among other nodes, and (3) each
object’s transmission path. We have been develop-
g an execution engine for the SMIL-like language

which supports dynamic QoS controls and user in-
teraction.

1. Introduction

As high-speed network has become widespread, var-
ious methods for designing and developing distributed
multimedia systems have been proposed.
synthesis[1] is one of promising methods to develop reli-
able distributed systems efficiently. Generally when we
develop distributed systems, we need to specify com-
munication among computers for data transmission and
synchronization. However, since such communication is
rather complicated, we may often make mistakes if we
describe such communication directly. In protocol syn-
thesis methods, we describe the specification of a whole
system as if it is a centralized program (called a service
specification). The methods automatically synthesize
a set of protocol entity specifications (called a protocol
specification) which include not only nodes’ behavior
but also communication among them. Protocol synthe-
sis methods for various computational models such as
EFSMs, Petri nets, LOTOS and timed automata have
been proposed [1, 2, 3, 4, 5, 6, 7].

We think it is important to apply protocol synthe-

Protocol

sis approaches to the development of distributed multi-
media systems, since we have to deal with the follow-
ing problems in the development: (1) a lot of interac-
tion among users may occur, and (2) multiple media-
object may compete with network resources. About
the problem (1), it is very difficult to specify such in-
teraction in a distributed environment, since they are
implemented by complex communication. Also, about
the problem (2), resource reservation such as RSVP
[9] and QoS routing can be used to provide end-to-end
QoS for users [10, 11, 12]. However, in such a situation
that we know which and what size of media-object is
transferred in the system, it is much efficient to analyze
the concurrency of multiple media transmission in the
service specification, and specify adequate routes in the
protocol specification to avoid network congestion.

In this paper, we propose a design method based
on protocol synthesis for distributed multimedia sys-
tems. In this method, the sequence of media presen-
tation on each node (user’s machine) is described in a
SMIL-like language as a scenario. A specification of
the total system (a service specification) is described
as a set of all the users’ scenarios and control scenarios
specifying interaction between the users. For a given
service specification, a distributed environment (where
network topology and link capacities are known), and
bandwidth requirement for each media-object, a set of
protocol entity specifications (a protocol specification)
is automatically derived. The protocol entity specifi-
cations are implemented using our QOS-SMIL player
proposed in [15]. In the derived protocol specification,
adequate routes for media transmission are determined
automatically so that the minimum unused bandwidth
is maximized by using a technique to solve linear pro-
gramming problems.

2. Service Specification
2.1. Basic Policy

For development of multimedia presentation systems
consisting of multiple users on a network, the following
criteria should be considered.

(1) The whole system behavior should be easily de-
scribed as a service specification where interaction
among users (nodes) should be easily described
with high-level communication primitives without
considering complicated message exchanges .

(2) A given service specification should be imple-
mented as a set of all nodes’ protocol entity specifi-
cations (protocol specification) where each node’s
specification includes message exchanges among
nodes for the interaction specified in the service
specification.

For the above (1) in the proposed method, we define
SMIL-EX language where a synchronous communica-
tion mechanism (m of n participants can synchronize
with each other and exchange data) as well as some
other useful mechanisms are introduced to SMIL [8].

For the above (2), we propose a protocol synthesis
method where the synchronization mechanism is imple-
mented as asynchronous communication among nodes
in each node’s entity specification. In the implementa-
tion level, we also consider an optimal route selection
for avoiding network congestion due to multiple object
data transmissions.

In this paper, we describe a service specification of
a multi-user multimedia presentation system as a set of
scenarios in SMIL-EX. Fig. 1 depicts the organization
of the whole specification. A scenario is described for
each user separately from others. And in Presentation
Definition File, we specify assignment of all scenarios
to the respective nodes, information on the target net-
work, and so on.

2.2. SMIL-EX

SMIL documents are composed of XML elements
[13]. In a SMIL document, multi-media objects such
as movies and sounds are called objects. For each ob-
ject, (1) layout information such as displaying posi-
tion (called region) and its (2) behavior such as start-
ing/ending time of its playback are specified separately.
The layout information is described mainly by region
elements. The behavior of objects is described by par
and seq elements. These elements are used for par-
allel and sequential playbacks of objects, respectively.
Objects are identified by file names (URLs) using src
attributes. The starting/ending time of object play-
backs and their durations are specified by begin, dur,
end, clip-begin and clip-end attributes.

However, SMIL does not support iterative state-
ments, variables nor branch statements.
trol statements are useful for specifying scenarios of
multimedia presentations simply and comprehensibly.
Therefore, in SMIL-EX, we introduce four new ele-
ments : while, if, input and set.

Such con-

<while con-

| Presentation Definition File |

| Scenario of Total Behavior |

| Scenario of Switching Media |

Scenario of
Student 2 Node

Scenario of Scenario of
Teacher Node ||Student 1 Node

Figure 1: Service Specification

dition> ... </while> specifies that the statements
between <while> and </while> are repeatedly ex-
ecuted while condition is true. <input var="x"
from="region A" val="A B C'"/> specifies that a value
of A, B or C is input from region region A and
stored to variable x. <set var="x" wval="A"/> sim-
ply sets value A to variable x. The value of vari-
able variable-name is referred as ""%variable—-name;".
Every reference ')variable-name;' is replaced by
its actual value when the corresponding <input> or
<set> is executed. This notation can be used in if
and while statements, src attributes of <video> ele-
ments, and so on. For example, a video object whose
source is dynamically changed, can be specified as
http://%variable-name;/video.mpg. We can use any
regions specified in other documents as sources of
<input> elements. For this purpose, each document
has an unique ID and each region is referred to as
document-ID/region.

In order to specify cooperative work among mul-
tiple users, we introduce <sync-in id="SYNC- ID"
var="x"/> and <sync-out id="SYNC-ID" val="y"/>
elements for synchronization among documents. All
<sync-out> and <sync-in> elements with the same ID
must synchronize with each other. When they synchro-
nize, the output value y in <sync-out> element is set
to variable x in <sync-in> element. We can also spec-
ify synchronization among any k of n <sync> elements.
A master for each synchronization can be specified by
master='"true' attribute where the master must join
the synchronization.

The conditions for synchronization can be specified
by number and val attributes in master’s <sync> el-
ement. When number="2" is specified, even if more
than two documents try to synchronize, only the master
document and another one document can synchronize.
Using this notation, we can specify mutual exclusion
easily.

In this paper, we only focus on the above elements
although there are some other elements in SMIL. Note
that the above specification can be modeled as a live
and safe Free-Choice net [14] with variables where the
live and safe Free-Choice net is a sub-class of Petri
nets or concurrent extended finite state machines with
synchronization. Therefore, hereafter, SMIL-EX doc-

<?xni versw on=
<! DOCTYPE sml ex SYSTEM Snmi | Ex. dtd">

- details are omtted -->

TEACHER'/ >
STU:ENT />
<region id="BUTTON'/>
</ 1 ayout >
</ head>
<body>
s nc in id="SYNC START" var* "condi tion’ />
|Ievar—cond|t|on op="n val =" STOP"
<par |endsync- first”
<wh
<par endsync- irst"
<sync-in"id="SYNC- STUDENT var ="student"/>
<video src="%tudent;/student.npg"/>
<\/J_)Iar>
</ whi | e>
<whi | e>

<i nput var=" request” region=" BUTTON' val =" REQUEST"/ >
/s n‘c out id="SYNC- REQUEST" val ="%ode-id;"/>
<
<video src="*Text/text.npg"/>
<vi deo src=" Teacher/teac er.npg"/>
<sync-in id="SYNC-END' var="condition"/>
</ par >
</ whi | e>
</'body>
</sml-ex>
sync Iﬂ

e END
i i

NEQEXNONAWNEQOONAINRWNEQORNDIRWNE

vi deo
"+ Text/ text. mpg"

“Teache!) £&3cher . npg”

“S
coni

Gy

Figure 2: Scenario of Student

ument is often represented as the Petri net model so
that we can easily understand its control structure.
In SMIL, we can specify interruption such as <par
endsync="first'> to execute statements concurrently
and stop all the statements when one of them is fin-
ished. Since such interruption cannot be easily ex-
pressed in Petri net structure, we denote each inter-
ruption as a dotted rectangle as shown in Fig. 2.

2.3. Example of Describing Service Speci-
fication

In this paper, we assume that a specification of
a multimedia presentation system (e.g., remote lec-
tures) consists of a set of the respective scenarios for
all users (e.g., a teacher and students) and a set of sce-
narios specifying interaction among those users. Each
user’s scenario specifies what objects should be played
back on his/her terminal. The scenarios for interaction
among users specify the total system’s behavior and
constraints among users, that is, the temporal order-
ing of object playbacks, mutual exclusion among users
for selecting some speakers among users who want to
speak, and so on.

In the following, we explain how to describe ser-
vice specifications using an example of remote lectures.
First, we show an example scenario of a student in Fig.
2. In this example, the lecture begins with the syn-
chronization element of SYNC-START (line 13 of Fig. 2)

1: <?xm_versi on="

2. < DOCI'YPE sml- ex SYSTEM Smi | Ex. dtd">

3: <smil-ex

4: <head> <!-- details are omtted -->

5. </ head>

6: <body>

7. <sync-in id="SYNC- START" var="condition"/>
8: <whi l'e var="condition" op="ne" val ="STOP">
9: <par endsync— first">
10: <whi | e
11: <par endsync- first"
12: <sync-in"id="SYNC ST DENT" var ="st uden! />
13: <V|deo src="%st udent ; /st udent. mpg"/
14: </
15: </ |\ >
16: <vi deo_src=" Texl/lexl . mpg"/
17: <sync-in id="S END" var=" cundltl on"/>
18: </ par>
19 </ whi | e>
20: </ body>
21: </sml-ex>

sync-in
" SYNC- START"
condition . ENI

Josa nhi | e 5]

Figure 3: Scenario of Teacher

and repeats the following behavior until the synchro-
nization element of SYNC-END (line 28 of Fig. 2) is ex-
ecuted. During the lecture, (1) the object used for lec-
tures (#Text_1/text.mpg in line 26), (2) the live video
object of the teacher (Teacher/teacher.mpg in line 27)
and (3) the live video object of the current speaker
(i-e., one of students) (%student;/student.mpg in line
19) are played back on the student’s terminal in par-
allel. <while> element between lines 16 and 21 spec-
ifies that the current speaker is changed by the syn-
chronization element of SYNC-STUDENT in line 18. Also,
<while> element between lines 22 and 25 specifies the
synchronization element of SYNC-REQUEST for a request
to speak. When the request is accepted, the value of
variable %node-id; for identifying the student is re-
ceived at other users’ scenarios.

We can also specify the source of each object as fol-
lows.

e If an object is placed on or transferred from a
fixed server, the server name is specified directly
in the corresponding URL. In the above example,
Teacher denotes the URL for ”teacher.mpg”.

o If an object is placed on multiple servers, the mark
”*” can be added like *Text to indicate that any
available server can be selected. The candidates
of servers for *Text are specified in Presentation
Definition File in Fig. 1.

e In cases that the object source may be dynami-
cally switched, we use a variable to indicate the
object source (e.g., %student;/student.mpg) so
that the object is dynamically switched when the
new source is set to variable (%student;).

The whole specification of the remote lecture is given
as the scenario of (1) the teacher in Fig. 3, (2) the sce-
narios of n students (Student ; ,..., Student ,) in Fig.

1 <?2xml verswon "1.0"
2: <TDOCI'Y sml-ex SYSTEM Smi | Ex. dtd">
3 <smil-
4: <head/> <!-- details are onmtted -->
5. <body>
6: <i nput var="condition" re i —"TEACHER/ BUTTON' val =" START"/>
7. <sync-out naster="true" YNC- val ="%ondi tion;"/>
8: <whi | e var="condi tion" o " vaI STG’>
9: <set var="conditionl" va />
10: <set var="condition2" val 1>
11: <par endsync="first">
12: <i nput var="conditionl" regi on="TEACHER/ BUTTON' val =’ " STOP_REPEAT" />
%i: /<| nput var="condi ti on2" regi on="STUDENT1/ BUTTON' val ="STOP REPEAT"/>
: </ par >
15: <i var— condi tionl" op="ne" val =""><t hen>
16: et var="condition" val ="%onditionl;"/>
17: </then><e|se>
18: <set var="condition" val ="%ondition2;"/>
19: </ el se></if>
%g: /s nf out master="true" id="SYNC-END' val ="%ondition;"/>
N < I
22: </ body>
23: </ sm I-ex>
sync- out
COI’\dI U on " SYNC- START"
EACHER' %:ondmnn C

@ 5} N Wm\e

T et
roar” ZoPndREom- condi 1} on<- NC.
ipar i ;”ﬂ/sndn?om cund\ElNPon

Figure 4: Scenario of Total Behavior

2, (3) the scenario for the whole behavior (i.e., interac-
tion and constraints among the teacher and students)
in Fig. 4, (4) the scenario of how to switch the cur-
rent speaker among all students shown in Fig. 5, and
(5) Presentation Definition File (here, for limita-
tion of space, its details are omitted).

The scenario of the whole behavior in Fig. 4 specifies
that synchronization of SYNC-START is executed after
the teacher pushes the start button (START). When
the teacher or Student (Who is the leader of the stu-
dents) pushes the repeat (REPEAT) or end (STOP)
button, the synchronization of SYNC-END is executed.

The switching control scenario in Fig. 5 specifies
how to switch to the current speaker dynamically de-
pending on the requests from the students. The syn-
chronization of SYNC-REQUEST is executed when a stu-
dent wants to speak. Here, we assume that the teacher
is a master for synchronization. Therefore, the teacher
always joins each synchronization and only one student
can join the synchronization among all students exclu-
sively. The teacher can push the accept (ACCEPT)
or reject (REJECT) button. When accepted, the syn-
chronization of SYNC-STUDENT is executed to tell the
selected student to all students.

3. Synthesizing Protocol Specifica-
tion

In order to execute the scenarios on P actual nodes
(entities), the synchronous communication between
scenarios must be realized with asynchronous commu-
nication between the P nodes.

For this purpose, we introduce <send> and
<receive> elements in SMIL-EX. For example, <send
id="MessageID'" to='NodeID"
val="Value'> represents that "Value' is sent to node
"NodeID'" as a message with "MessageID". If multiple
nodes are specified in "NodeID", the messages are sent
to all of them.

<?xm__version="1.0"?

<!)OCI YPE smi | - ex SYSTEM Smi | Ex. dtd">

<sm

<head/> <!-- details are onitted -->

<body>
<whi | e>
<sync-in master="true" id="SYNC REQUEST" var="request" number="2"/>
<input var="accept"” regl on="TEACHER/ BUTTON" val ="ACCEPT REJECT"/>

<if var="accept" op="eq" val =" ACCEPT" >
<sync-out naster="true" id="SYNC- STUDENT" val ="% equest;"/>
>

BReEe
RONEOORNDIRWINE

while EnL

+ SINC. STUDENT”
t T equest;
@)

Figure 5: Scenario of Switch among Speaking Stu-
dents

3.1. Synthesis Algorithm

In our synthesis algorithm, we derive a set of P pro-
tocol entity specifications. Let pspecy denote the pro-
tocol entity specification of node k.

At the starting point of derivation, node k has (a)
a set of scenarios allocated to node k in the given
Presentation Definition File and (b) a set of sce-
narios which have at least one element whose responsi-
ble node (defined later) is node k, as pspecg. Also node
k has all the variables used in the scenarios of (a).

We assume a responsible node for each element ex-
ecuted by more than one node. For example, <input
var="x" from="region A"/> element may be executed
by two nodes, since the node which has "region A"
where an input value is given may be different from the
one which has variable "x". We decide a responsible
node for such an element as follows.

e <input>: the node which has the region where an
input value is given

e <video>: the node which receives the video.

¢ <sync-in>, <sync-out>: the master node of the
synchronization (if master is not specified, one
node is selected at random)

Then pspecy is derived as follows.

1. For each element (except <input>, <sync>
and <par endsync="first">) in pspecy, add
send/receive elements after or before the element
if the responsible node of its next or previous ele-
ment is not node k.

2. For each <input> element in pspecy, if node k is
its responsible node, add <send> after the element.
This sends the input value to the node which has
the variable "x" specified in <input> element. If
node k is the node which has variable "x", add
<receive> element to receive the input value and
<send> element to let the next responsible node
know the execution has been finished.

3. For each <sync> element in pspecy, replace it with
a set of elements. The details are explained later.

4. For each <par endsync="first'"> element in

pspecy, replace it with a set of elements. The de-

tails are also explained later.
5. Delete any other element in pspecy which is not

executed in node k.
6. Make a new scenario which has all the scenarios in

pspeck as parallel components and let the scenario
be pspecy.

The idea is that we put <send> and <receive> el-
ements at the points where the responsible nodes are
changed between nodes. Also, they are put if the value
should be transferred.

<sync> is implemented by the following message ex-
change.

o Synchronization request message : Each node ex-
cept the synchronization master node sends this

message to the master node to synchronize.
o Synchronization accept message : When node k

is a synchronization master node, the node waits
until receiving synchronization request messages
from all the nodes that have the possibility of syn-
chronization. Then when each synchronization re-
quest message is received, the master node evalu-
ates the condition and sends synchronization ac-
cept messages to all the nodes which can join the
synchronization if the condition is acceptable.

Those messages include values if needed.

Also we explain the implementation of <par
endsync="first'"> ... </par>. First, let us consider
the case that no <sync> elements. are included The fol-
lowing message transmissions are added.

e Fnd message : A message exchange from the
node (node h) which executes the last action
of each action sequence in concurrent action se-
quences to the responsible node (node p) of <par

endsync="first"> </par> is added.
o FEnd notification message : The responsible node

sends the message to all the nodes concerned to

stop their execution of <par> ... </par>.
o Confirmation message : After stopping their exe-

cution, the nodes send the confirmation messages
to the responsible node. The responsible node p
stops the execution of the actions and sends the
execution control message explained above to the
node where the next action is executed after re-
ceiving all the confirmation messages.

By adding those message exchanges in the last of each
action sequence, the execution of <par> element is com-
pleted when one of action sequences has finished. There
is a case that an interruption has occurred during the
input value is transmitted after an input action is ex-
ecuted. Even in such a case, the input value will
be sent to the responsible node (on which the vari-
able is placed) and the update of the variable will

be completed before the confirmation message to the
end notification message is returned. We also explain
the way for the case that <par endsync="first">
</par> includes <sync> element. In this case, the syn-
chronization master node enters the synchronization
cancel state when the node receives the end notifica-
tion message. And when the node is in the synchro-
nization cancel state, the node sends synchronization
cancel messages to all the nodes from which the syn-
chronization master node has received the synchroniza-
tion request messages in <par> ... </par> (also the
nodes from which the node receives the messages after
it enters the synchronization cancel state). The actions
of the other nodes depend on if the node has already
sent the synchronization request message before receiv-
ing the end notification message.

o If the node has already sent the message, the node
waits for the reply message from the synchroniza-
tion master node. If the reply message is the
synchronization accept message, the correspond-
ing synchronization is executed. If the reply mes-
sage is the synchronization cancel message, noth-
ing is done. Then the interruption is completed
after sending the confirmation message to the re-

sponsible node.
o In the other case, the node sends the confirmation

message immediately and completes the interrup-
tion.

The responsible node sends complete messages to all
the nodes that have synchronization elements in <par>
after receiving all the confirmation messages. The syn-
chronization master nodes leaves the cancel state after
receiving the complete messages. The actions of <par>
are all completed by the above way.

By deleting actions which are not executed in node
k, we can obtain the scenarios corresponding to node
k. Finally, the protocol entity specification of node k
is synthesized from those scenarios by making all the
scenarios run in parallel.

4. Deciding Routes for Object

Transmission
Suppose that at most m objects may be transmitted
at the same time in a protocol specification. In such a
case, we formulate a mixed linear programming prob-
lem to maximize the minimum of unused bandwidth on
each link for efficient utilization of network resources.
For this purpose, we introduce the following vari-
ables. Here, we assume that for each object transmis-
sion from one node to another, there are k possible
routes.
e st.h(h = 1,...,m): its value is 1 if object A is
being transmitted.

e path_h_ij q(qg = 1,...,k): its value is 1 if ¢-th
route is selected for transmitting object h from
node 7 to node j.

e Min_un_used_band: the minimum of the band-
width left (unused) on each link

o un_used band(L_z): the unused bandwidth on
link L_z

e maz(L_z) :the link capacity of L_z

Also we use the following terms.

o band_h: the bandwidth required for the transmis-
sion of object h

o ST : the set of objects transmitted concurrently

o path(L_z): the set of path_h_ij_q containing link
Lz

The problem is formulated as follows.

mazx : Min_un_used_band 1

subject to:

st_h = 1(for each st_h € ST) 2

path_ha3 1+ .-+ path_haj k=1
Z (band_h - path_h_ij_q) < maz(L_x)

path_h_ij_q€path(L_zx)

Z (band_h - path_h_ij_q)

path_h_ij_q€path(L_x)

= un_used_band(L_z) (5)

(1)
(2)
3)
(4)

4

maz(Lz) —

Min_un_used band < un_used band(L_z) (6)

The equations (2) and (3) are obvious. (4) should
hold due to the limitation of bandwidth. Then, the
above problem can be solved using techniques for solv-
ing mixed LP problems.

We also consider the following three cases where
streams are multicast streams, objects are replicated to
several nodes, and the nodes where objects are placed
are dynamically changed.

Multicast Here, if stream st_h is a multicast stream
transmitted from node ¢ through link L_z, we introduce
0-1 integer variables multi_h_z whose value is 1 if either
one of the routes path_h_ij1_q1,...,path_h_1j,_q, for
multicast stream st_h uses link I_z. Then, we add the
following inequality.
path_hij, g, <multihz (1<y<w) (7)

Also, inequality (4) is modified by using variable
multi_h_x.
Replicated Objects An object may be replicated
and placed on several nodes. In such a case, we modify
the mixed LP problem so that a route from one of those
nodes is selected. Here suppose that stream st_h € ST
has v candidates of source nodes #;,...,%,. Then we
introduce v variables st_h_t1,...,st_h_1, and add the
following equation.

st_h i1+ -+ st_hi, = st h (8)

Also equation (3) is replaced by the following v equa-
tions (1 < u < v).
path_h_i,j 14 -+ path_h_ 1,5 k = st_h_i, (9)

Dynamic Change of Object Source Objects such
as the video of a current speaker in a video-conference,
the object source is changed dynamically. In this case,
the routes should be decided so that used bandwidth on
each link does not exceed its capacity even if any node
is selected as the source node. Now suppose that a
stream st_h € ST has v possible sources. Let 21,...,1,
denote the source nodes, and assume that 21,...,12, are
different nodes for simplicity of discussion. Then we
introduce v variables st_h_1, ..., st_h_v and add the fol-
lowing equation.

st_hiy = =st_hi, = st_h (10)

Also equation (3) is replaced by the following equation.
path_hi,3 1+ - +path_h_i,j k= st_h_i, (11)

In these equations, the value of variable path_h_i,j5_k
becomes 1 when k-th candidate of stream h is used to
transmit the object from node 7, to node j. By this
change, the routes of all streams st_h_11,...,st_h_t,
can be decided. Then we introduce a new variable
select_h_j_x for each pair of st_h and L _z, which repre-
sents the bandwidth used by path_h_1j_q and add the
following relation.

select_h_j_x > band_h_1 - path_h_aj_q
(path_h_1j_q € path(L_z)) (12)

In the above equation, band_h_ represents the band-
width of the source that is placed on node 7 in

stream h. Also equation (4) is changed to replace
the stream whose source is dynamically switched by
variable select_h_j_x. DYNAMIC denotes the set of

streams whose sources are dynamically switched.

Z select_h_j_x
st_.he DYNAMIC

+ Z (band_h - path_h_ij_q)

path_hij q € path(L_z)
st.th ¢ DYNAMIC

< maz(L_z) (13)
5. Experimental Results and Con-
clusion

5.1. Experimental Results

We have implemented the algorithm proposed in
Sections 3 and 4, and we have also checked the rela-
tion between the number of candidates of the routes

Num. of Candidates 1 2 3 4
Min. unused bandwidth (%) 18.3 18.4 | 21.2 | 283
Ave. unused bandwidth (%) 28.6 39.7 | 46.8 | 53.6
Ave. Calculation time (sec.) 0.01 0.66 | 2.75 | 9.77

Table 1: Relation Between Number of Candidates
and Unused Bandwidth

and the unused bandwidth . In order to evaluate our
route selection algorithm in Section 4, we have gener-
ated some random networks with 25 nodes and placed
all users on three nodes on each generated network.
Then, we have calculated the results for the cases that
the number of candidates of routes is changed from 1
to 4. When only one candidate is given, all objects are
transmitted through their shortest paths. When the
number of candidates is larger than one, the candidate
which maximizes the minimum of unused bandwidth
on each link is selected. We have calculated the results
for 10 instances. The results are shown in Table 1. We
have used Pentium IIT 600MHz with 256 MB memory.
This table shows how much unused bandwidth is left
after applying our route selection algorithm. Here, the
average unused bandwidth and the minimum unused
bandwidth are shown. By increasing the number of the
candidates from 2 to 4, the selection among several al-
ternative routes becomes possible, which also makes the
unused bandwidth large. The unused bandwidth can be
increased not only by the selection among alternative
routes but also by the use of multicast which decreases
waste bandwidth by using common links. From those
results, we believe that our method enables to use the
network resources efficiently.

5.2. Implementation of SMIL-EX docu-
ments

Generally, in order to cope with shortage of net-
work /system resources or packet losses/delays, QoS
control mechanisms are required in multi-media appli-
cations. For the purpose, in [15], we have proposed an
extension of SMIL (called QOS-SMIL) with some QoS
control facilities, and implemented its player.

In QOS-SMIL, new statements for two major QoS
requirements (1) a dynamic switching facility among
alternative objects, and (2) a precise inter-media syn-
chronization facility, are introduced to a sub-class of
SMIL 1.0. The above facility (1) enables media-scaling
of objects and dynamic server selection, which selects
the optimal server among several available servers dis-
tributing the same content objects. And (2) allows
users/designers to specify the maximum skew deviation
in inter-media synchronization depending on user’s al-
lowance/preference or nature of objects.

In the proposed implementation technique, we use

a subclass of E-LOTOS [16] (called real-time LOTOS

[17, 18]) as an intermediate language since it can nicely
treat timing constraints for actions and synchroniza-
tion among parallel processes used in SMIL documents.
We implement QoS control mechanisms using the con-
straint oriented style [19] of real-time LOTOS where a
system is composed of a main process (e.g., video/audio
playback) and several constraint processes (e.g., con-
gestion detection, media scaling, inter-media synchro-
nization, and so on). Those processes run in par-
allel satisfying the specified constraints. There are
a lot of QoS control mechanisms to be implemented
and for each control mechanism, several implementa-
tions can be considered depending on the system re-
Using the above technique, we can select
and implement different combinations from such mech-
anisms/implementations suitable for target environ-
ments. Thus, the proposed technique can be used for
rapid prototyping of the specified combination of QoS
control mechanisms.

sources.

Based on the proposed technique, we have developed
a converter from QOS-SMIL documents to the corre-
sponding real-time LOTOS specifications. Using this
converter and our real-time LOTOS compiler [17, 18],
QOS-SMIL documents are implemented as executable
programs with a real-time thread mechanism. In each
generated program, object playback processes are as-
signed to the corresponding real-time threads, and all
the threads are scheduled in EDF (Earliest Deadline
First) manner.

In our experiment, the generated programs could
playback each Motion-JPEG video with 176 x 120 pix-
elsin 115 frames/sec. on a RedHat5.2 PC with Pentium
III 500MHz and 128MB memory (also, 57 frames/sec.
for two parallel video playbacks and 37 frames/sec. for
three) where we used JPEG library of a free-ware called
XAnim. In another experiment, we have also confirmed
that the generated programs with inter-media synchro-
nization could regulate the maximum skew deviation
between two parallel video playbacks in about 20msec.
on normal UNIX (RedHat5.2). For details of QOS-
SMIL, its implementation technique and experimental
results, see [15].

For implementation of SMIL-EX documents in this
paper, we are currently trying to add some new el-
ements used in SMIL-EX to the above QOS-SMIL
tool so that the elements such as <send>, <receive>,
<while> and <if> can be treated.

5.3. Conclusion

In this paper, we have proposed a design method
based on protocol synthesis for multi-user multimedia
presentation systems. In this method, we have defined

a SMIL-like language called SMIL-EX and a service

specification of the whole system is described as a set
of scenarios corresponding to users’ respective behav-
ior and interaction among those users using multi-way
synchronization. We have also proposed a protocol
synthesis technique which derives each node’s proto-
col entity specification including asynchronous message
exchanges for implementing multi-way synchronization
among nodes. To maximize the unused bandwidth on
the network, we have also proposed a route selection
algorithm for each object transmission when several
routes exist for the transmission. As a total, in the
proposed method, we can describe abstract specifica-
tions in SMIL-EX, while in the implementation level,
our protocol synthesis method and route selection al-
gorithm for avoiding congestion can make the specified
distributed multi-media presentation systems work ef-
ficiently.

Development of the SMIL-EX player and evaluation
of the proposed method by applying to more practical
examples is part of future work.

1] K. Saleh : “Synthesis of Communication Pro-
tocols: an Annotated Bibliography”, ACM
SIGCOMM Computer Communication Re-
view, Vol.26, No.5, pp.40-59 (1996).

[2] P.-Y. M. Chu and M. T. Liu : “Protocol Syn-
thesis in a State-transition Model”, Proc. of
COMPSAC 88, pp. 505-512 (1988).

[3] R. Gotzhein and G. v. Bochmann : “Deriving
Protocol Specifications from Service Specifica-
tions Including Parameters”, ACM Trans. on
Computer Systems, Vol.8, No.4, pp.255-283
(1990).

[4] T. Higashino, K. Okano, H. Imajo and K.
Taniguchi : “Deriving Protocol Specifica-
tions from Service Specifications in Extended
FSM Models”, Proc. of 13th Int. Conf. on
Distributed Computing Systems (ICDCS-13),
pp.141-148 (1993).

[5] H. Yamaguchi, K. Okano, T. Higashino and
K. Taniguchi : “Synthesis of Protocol Entities’
Specifications from Service Specifications in a
Perti Net Model with Registers”, Proc. of 15th
Int. Conf. on Distributed Computing Systems
(ICDCS-15), pp.510-517 (1995).

6] R. Langerak : “Decomposition of Functional-
ity; a Correctness—Preserving LOTOS Trans-
formation”, Proc. of 10th IFIP WG6.1 Symp.
on Protocol Specification, Testing and Verifi-
cation (PSTV-10), pp.229-242 (1990).

[71 A. Khoumsi, G. v. Bochmann and R. Dssouli

“Protocol Synthesis for Real-Time Appli-
cations”, Proc. of IFIP Joint Int. Conf. On
12th Formal Description Techniques and 19th
Protocol Specification, Testing and Verifica-
tion (FORTE/PSTV’99), pp.417-433(1999).

[8] W3C : “Synchronized Multimedia Integration
Language”, (SMIL) 1.0 Spec.,
http://www.w3c.org/TR/REC-smil/

9] L. Zhang, S. Deering, D. Estrin, S. Shenker
and D. Zappala : “RSVP : A New Re-
source ReSerVation Protocol”, TEFE Nei-
works, Vol.7, pp.8—18 (1993).

[10] C. Diot, W. Dabbous and J. Crowcroft :
“Multipoint Communication : A Survey of
Protocol, Functions, and Mechanisms”, IEEE
Journal on Selected Areas in Communications,
Vol.15, No.3, pp.277-290 (1997).

[11] Z. Wang and J. Crowcroft : “Quality-of ser-
vice routing for supporting multimedia ap-
plications”, IEEFE Journal on Selected Ar-
eas in Commaunications, Vol.14, pp.1288-1234
(1996).

[12] C. Pornavalai, G. Chakraborty and N. Shira-
tori : “QoS Based Routing Algorithm in In-
tegrated Services Packet Networks”, Proc. of
IEEE 1997 Int. Conf. On Network Protocols
(ICNP’97), (1997).

[13] W3C : “Extensible ~ Markup Lan-
guage”, (XML) 1.0 W3C Recommendation,
http://www.w3c.org/TR/REC-zml/

[14] T. Murata : “Petri Nets : Properties, Analy-
sis and Applications”, Proc. of IEEE, Vol.77,
No.4, pp.541-580 (1989).

[15] Y. Terashima, K. Yasumoto, T. Higashino, K.
Abe, T. Matsuura and K. Taniguchi : “Ex-
tension of SMIL with QoS Control and its Im-
plementation”, to appear in Proc. IEEE Int.
Conf. on Multimedia and Ezpo (ICME2000)

(2000).
[16] ISO : “Final Committee Draft 15437 on En-
hancements to LOTOS”, ISO/IEC

JTC1/5C21/WG7 (1998).

[17] T. Higashino : “Design and Implementation
of real-time LOTOS compiler”, IPA/MITI
(Japanese Ministry of International Trade
and Industry), hitp://www-tani.ics.es.osaka-
u.ac.jp/IPA/ (1999).

[18] H. Tatsumoto, K. Abe, K. Yasumoto, T. Hi-
gashino, T. Matsuura, H. Yamaguchi and K.
Taniguchi : “Development of Realtime LO-
TOS Compiler and Its Application to Mul-
timedia Systems”, Trans. of IPSJ, Vol. 41,
No. 2, pp.424-434 (2000) (in Japanese).

[19] C. Vissers A., G. Scollo and M. v. Sinderen

“Architecture and Specification Style in
Formal Descriptions of Distributed Systems”,
Proc. of 8th Int. Conf. on Protocol Specifi-
cation, Testing, and Verification (PSTV’88),
pp.189-204 (1988).

