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Abstract

In general, the services of a distributed system are

provided by some cooperative protocol entities. The pro-

tocol entities must exchange some data values and syn-

chronization messages in order to ensure the temporal

ordering of the events which are described in a service

speci�cation of the distributed system. It is desirable

that a correct protocol entity speci�cation for each node

can be derived automatically from a given service spec-

i�cation. In this paper, we propose an algorithm which

synthesizes a correct protocol entity speci�cation auto-

matically from a service speci�cation in a Petri Net

model with Registers called PNR model. In our model,

parallel events and selective operations can be described

naturally. The control ow of a service speci�cation

must be described as a free-choice net in order to sim-

plify the derivation algorithm, however, many practi-

cal systems can be described in this class. In our ap-

proach, since each protocol entity speci�cation is also

described in our PNR model, we can easily understand

what events can be executed in parallel at each protocol

entity.

1 Introduction

At a high level of abstraction, a distributed sys-
tem can be treated as a service provider that o�ers
some speci�ed services to some service users. A de-
scription of the temporal ordering of the service primi-
tives occurred at the SAP's (Service Access Points) can
be treated as a service speci�cation for the system[2].
At this level, the distributed system can be seen as a
black box. At a lower level of abstraction, the services
are provided by some cooperative protocol entities (or
nodes) that exchange some messages each other in or-
der to synchronize and/or exchange data values. At
this level, the behaviors of each protocol entity are de-
scribed as a protocol entity speci�cation, and the set of
all protocol entities' speci�cations is called a protocol
speci�cation[2].

In order to get a correct protocol speci�cation sat-
isfying a given service speci�cation, it is desirable
that the designer only describes a service speci�ca-
tion and that a correct protocol speci�cation can be
derived automatically from the service speci�cation.
Some synthetic approaches have been proposed such
as LOTOS based approaches[3], FSM/EFSM based
approaches [4][6] and so on (for survey, see [2]). In LO-
TOS based approaches, parallel events can be described
in a service speci�cation, however, e�cient distributed
control methods have not been proposed for the case
that the state variables are allocated to some protocol
entities separately. On the other hand, in FSM/EFSM
based approaches, parallel events cannot be treated.

In our previous paper [6], we have proposed a deriva-
tion technique for an EFSM model where some regis-
ters (state variables) can be allocated to some protocol
entities. And a distributed control method for chang-
ing the registers' values in a given distributed environ-
ment e�ciently is proposed. In general, for specifying
distributed systems naturally, it is desirable that both
parallel events and state variables can be treated in a
service speci�cation. However, for such a class, useful
algorithms for deriving protocol speci�cations have not
been proposed yet.

In this paper, we de�ne a Petri Net model with Reg-
isters (PNR model). In our PNR model, the control
ow is described as a Petri net and the model may
have a �nite number of registers. The registers rep-
resent resources in the distributed system. At each
transition, one I/O event is executed and the next reg-
isters' values are calculated from the current registers'
values and input data. For each transition, we can give
a guard to control the �rability of the transition. Us-
ing the guards, selective operations can be described.
For this PNR model, we propose a technique for deriv-
ing a correct protocol speci�cation from a given service
speci�cation and an allocation of I/O gates and regis-
ters to protocol entities. The service speci�cations and
derived protocol entities' speci�cations are described



in our PNR model. For simplifying the derivation al-
gorithm, we restrict the class of service speci�cations
where underlying nets must be treated as free-choice
nets[1] (FC nets). Although we restrict the class, par-
allel events and non-deterministic selections can be de-
scribed naturally in this class, and the class has con-
siderable power for specifying practical distributed sys-
tems. In the proposed method, each protocol entity
speci�cation is obtained from a given service speci�ca-
tion by replacing each transition with a sub-Petri net.
The sub-Petri net cooperates with other protocol enti-
ties' sub-Petri nets for simulating the transition.

The paper is structured as follows. In Section 2,
we give a de�nition of our PNR model. In Section 3,
an example of a service speci�cation is explained. In
Section 4, a derivation problem treated in this paper is
formally de�ned. The derivation algorithm is described
in Section 5.

2 Basic De�nitions

2.1 Petri Nets

De�nition1(Petri Net) A Petri net[1] is denoted by a
4-tuple PN = (P;T; F;M0) (or simply (N;M0) where
N denotes (P; T; F ) ). P is a �nite set of places and T

is a �nite set of transitions satisfying both P \ T = ;
and P [T 6= ;. F � P �T [T �P is a set of arcs and
M0 : P ! f0; 1; 2; : : :g is the initial marking. We say
that a place p is marked with k tokens if nonnegative
integer k is assigned as a marking for p.

For u; v 2 P[T , we denote the preset fvj(v; u) 2 Fg
of u by �u and the postset fvj(u; v) 2 Fg of u by u�.
Similarly we denote the union of all presets of u in a
set S by �S and the union of all postsets of u in S by
S�. A transition t is said to be enabled if each input
place p of t is marked with at least one token.
De�nition2(Free-Choice Net) A free-choice net[1]

(FC net) is a Petri net such that for all p 2 P , jp�j � 1
or �fp�g = fpg.

De�nition 2 indicates that if transitions share an in-
put place p in a FC net, then each of the output transi-
tions of p has exactly one input place p. In other words,
if a place p has a selective structure, p can determine
independently which output transition of p can �re (see
an example in Fig. 1). In the sequel, a FC net is a Petri
net such that a place p with a selective structure can
select its selection itself.

(a) non-FC net

p p’

2tt1

(b) FC net
t1

p

2t

Figure 1: Selective Structures.

2.2 Petri Net with Registers

In this paper, we introduce a Petri Net model with
Registers (PNR model).

De�nition3(Petri Net with Registers) A Petri
Net with Registers (PNR) is denoted by a pair
PNR = (PN;�), where � is de�ned as a 7-tuple
� = (Gs;A; G;R;C; �; Init). PN is a Petri net which
does not contain isolate transitions nor places. Gs is
a �nite set of gate symbols. A is a �nite set of events
whose gates are the elements in Gs. G, R, C are �nite
sets of guards, registers, register de�nition statements,
respectively. � : T ! G � A � C is a function repre-
senting the contents of transitions and Init is a function
specifying the initial values of registers. Here the net
PN is called the underlying net of the PNR.

A PNR may have some registers R1,...,Rn. Each Ri

is called a register variable. Each transition in a PNR
has a label of 3-tuple [a guard, an event, a register def-
inition statement]. An event in the set A must have
one of the the following three forms : a?x, a!E(: : :)
and i. The a?x denotes an input event and the vari-
able x represents an input value from the gate a (if
more than one input values are given, it is denoted like
a?x1; x2; x3; : : :). The a!E(: : :) denotes an output event
and the value of the expression E is emitted from the
gate a. E is an expression which may contain regis-
ter variables. The event i is an internal event which
does not execute any input/output. A guard in the
set G is a predicate which may contain the register
variables and/or input variables. A register de�nition
statement in the set C has the form Rh1

 f1(: : :), ...,

Rhi
 fi(: : :), where each fj (1 � j � i) is a function

which may contain the register variables and/or input
variables.

A transition t is enabled in a PNR = (PN;�) i�

t is enabled in the PN and the value of the guard of
t is true. If an enabled transition t �res, the event

of t is executed, and then the values of registers are
changed concurrently based on its register de�nition
statement (by preserving the current values of regis-
ters before the calculation, this concurrent calculation
can be done even on the single CPU system). For an
enabled transition which executes an input event, we
assume that it cannot �re until input data are given.

If (1) the event of a transition t is the internal event
i, (2) the guard of t is \true" and (3) the register de�ni-
tion statement of t is empty, then we call the transition
t an "-transition.

3 An Example of Service Speci�cation

The service speci�cations must be described in the
PNR model that satis�es some restrictions. The re-
strictions are described in Section 4.



Fig. 2 shows an example of a service speci�cation SS
in the PNR model. The speci�cation describes a sim-
ple distributed database system with a back up mech-
anism. There are four registers R1, R2, R3 and R4.

The system works as follows. First, the transition t1
�res and an input data x is given from the gate a. The
data x is stored in the register R4. After that, either
transition t2 or t3 �res. The values of their guards de-
cide which transition can �re. The guards of t2 and t3
are Man(R4) and Woman(R4), respectively, and they
calculate an attribute from the value of the register R4.
If the value of the attribute is \male", then the value
of the guard Man(R4) becomes true, and the transition
t2 �res. Then, the input data (the value of the register
R4) is appended to the register R1 (database for men).
If the value of the attribute is \female", then the value
of the guard Woman(R4) becomes true, and the tran-
sition t3 �res. Then, the input data is appended to the
register R2 (database for women). On the other hand,
the transition t4 can �re in parallel with the transition
t2 or t3. And the value of the register R4 (input data)
is appended to the register R3 (database for back up).
After those, the transition t5 �res and the size (volume)
of the back up database (register R3) is output from
the gate c. At this moment, the marking is the same
as the initial marking.

In Fig. 2, if the guards are \true", or if the register
de�nition statements are empty, then they are omitted.
Here, we do not describe the details of the functions
used in Fig. 2 such as Man, Woman, append and

Guard

Event

Register Definition
Statement

R1 : Database1 (for men)
R2 : Database2 (for women)

R4 : Input Data
R3 : Database3 (for back up)

a b c
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Figure 2: An Example of a Service Speci�cation SS.

sizeof. We can de�ne the details freely and they do
not inuence on the derivation algorithm.

4 Derivation Problem and an Example

of Protocol Speci�cation

In this section, we will give a formal de�nition of the
problem to implement a given service speci�cation SS

in a distributed system with p protocol entities. In this
paper, we assume that each protocol entity speci�ca-
tion is also described as the PNR model.

Let PEk denote a protocol entity speci�cation for
the protocol entity k, and let hPE1; : : : ; PEpi (or, sim-
ply PEh1;pi) denote a protocol speci�cation with p pro-
tocol entities. Here, we assume that each communica-
tion channel from protocol entity i to protocol entity j
is modeled as a FIFO queue (queueij) whose capacity
is in�nite. We call both sides of the channel the gate
gij . If the protocol entity i executes an output event
\gij !d", then the data d is enqueued to the queueij . If
the protocol entity j executes an input event \gij?x"
and the �rst element of the queueij is d, then the data
d is dequeued from the queueij and the value of d is as-
signed to the input variable x. If there are no elements
in the queueij , then we assume that protocol entity j

cannot execute the input event gij?x.

4.1 Allocation of Gates and Registers

We assume that each gate must belong to one of p
protocol entities, and that each register must be allo-
cated to more than one protocol entities. This means a
distributed allocation of resources. Let � denote such
a resource allocation. Fig. 3 denotes an example of
such a resource allocation �.

Since we assume that each gate must belong to one
of p protocol entities, the protocol entity which exe-
cutes the event of each transition t in SS can be de-
termined uniquely. We call such a protocol entity a re-

sponsible protocol entity of the transition t, and denote
it by RPE(t). Also, the responsible protocol entities of
all transitions in t�� are called next responsible protocol

entities, and we denote a set of such protocol entities
by RPE(t � �).
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Figure 3: An Allocation of Registers and Gates.
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Figure 4: PE1, PE2 and PE3.

4.2 Derivation Problem

For a protocol speci�cation PEh1;pi, we de�ne its
initial state as follows. If (1) each PEk(1 � k � p)
is at its initial marking, (2) its registers are set to the
initial values and (3) all FIFO queues (communication
channels) are empty, then such a state is called the
initial state of the PEh1;pi.

We de�ne the equivalence between a service speci�-
cation SS and a protocol speci�cation PEh1;pi as fol-
lows.
De�nition4(Equivalence) Suppose that all I/O
events gij?x and gij !E(: : :) for the communication
channels and internal events i are treated as unobserv-
able and the other I/O events are treated as observable.
If a service speci�cation SS and a protocol speci�ca-
tion PEh1;pi are observational congruent [5], then we
say that SS and PEh1;pi are equivalent. Such PEh1;pi

is called a correct protocol speci�cation for the service
speci�cation SS.

If SS and PEh1;pi are observational congruent, then
all observational event sequences in SS (PEh1;pi) must
be also executable in PEh1;pi (SS). Also at the state
after executing each observational event sequence, ex-
ecutable observational events for SS and PEh1;pi must
be the same.

Here, we de�ne the conict of registers in SS as
follows.
De�nition5(Conict of Registers) If there are two
transitions ti and tj (ti 6= tj) which can �re simulta-
neously and if the transition ti (or tj) has a register
de�nition statement that changes the value of a regis-
ter R and the another transition tj (or ti) has a register

de�nition statement or an output event that uses the
register R, then we say that there is a conict of regis-
ters for the pair of the transitions ti and tj .

From De�nition 5, the problem to �nd possibilities
of conicts of registers for a given service speci�cation
can be reduced to the concurrent �rability problem of
its underlying net and it is known that the concurrent
�rability problem is decidable[1].
De�nition6(Derivation Problem) For a given SS,
a set of p protocol entities and a resource allocation
�, we will consider the problem to derive a correct
protocol speci�cation PEh1;pi in this paper.

Here, for simplicity of discussion, we will give the
following �ve restrictions for SS and �.
1. SS must be modeled as a PNR = (PN;�) and the

PN must be a live and safe FC net (if the PN is
not connected, then each connected net must be a
live and safe FC net).

2. The responsible protocol entities for all transitions
sharing one input place must be the same, i.e., for
any t1; t2 2 T , RPE(t1) = RPE(t2) if t1; t2 2 p�.

3. There are no conicts of registers in SS.

4. There are no internal events i in SS.

5. If a transition t in SS can �re at the initial state,
then the registers used in its guard and/or out-
put event must be allocated to the protocol entity
RPE(t).
By the restrictions 1 and 2, if selective transitions

are described in a service speci�cation, such a selection
can be done by the responsible protocol entity for those
transitions. Also, the restriction 1 has good e�ects for



the reformation of protocol entities' speci�cations as
described later. A service speci�cation satisfying the
restriction 3 is called a conict-free service speci�ca-
tion. In our model, more than one registers' values
may be changed in each transition and such a change
is executed by some cooperative protocol entities. If
a conict of registers occurs, during simulation of one
transition, another transition must be blocked to avoid
inconsistency of the registers' values among the proto-
col entities. For this purpose, many mutual exclusion
algorithms are useful where distributed mutual exclu-
sion controls for accessing critical sections are given.
We can apply one of them to such transitions to control
the conicts of registers. For the details, see [8]. The
restriction 4 is used for simplifying the proof of equiv-
alence. This restriction is not essential. By the restric-
tion 5, the responsible protocol entity of the transitions
which can �re at the initial state can decide which tran-
sition can �re by itself and start the simulation without
asking registers' values to other protocol entities. This
restriction is not also essential. By inserting a dummy
transition with an empty register de�nition statement

and a \true" guard before those transitions and treat-
ing it as the initial transition, this restriction can be
removed.

4.3 An Example of Protocol Speci�cation

Fig. 4 shows PEh1;3i derived from the service spec-
i�cation SS in Fig. 2 and the resource allocation � in
Fig. 3.

Here, we assume that each protocol entity has an ad-
ditional local working register R0, which has a value ta-
ble. The values of registers and input data sent through
the communication channels can be kept in the table at
each protocol entity. We use the following functions as
primitive functions. The function put(R0; u) stores the
registers' values and input data in the input u to the
register R0. The functions get(R0; v) and get(R0;Rh)
return the latest values of the input variable v and the
register Rh stored in R0, respectively.

In Fig. 4, if the guards are \true", or if the register
de�nition statements are empty, then they are omitted.

5 Derivation of Protocol Speci�cations

5.1 Basic Idea

Basically, we construct the protocol speci�cation as
follows. For each transition t in a given SS, we con-
struct a sub-Petri net SP k(t) for each PEk that sim-
ulates the transition t. A protocol entity speci�cation
PEk is constructed by replacing each transition t in SS
with the corresponding sub-Petri net SPk(t).

In [6], a method to simulate a transition t in SS

described as an EFSM model is proposed where the
number of exchanged messages is minimized. We use

the similar method to construct SP k(t). In [6], since
parallel events are not permitted, they are executed
sequentially. However, in the PNR model, those events
can be executed in parallel. In Section 5.2, we explain
the details of this simulation method.

In general, in order to derive protocol speci�cations
in the PNR model, we have to solve the following prob-
lems.
P1. Many transitions in SS may �re in parallel and

several messages simulating those transitions may
be sent to a protocol entity at the same time
through the same communication channel. Those
messages should be distinguished.

P2. Complex non-deterministic selective structures can
be described in a general PNRmodel. At the proto-
col speci�cation level, many protocol entities must
participate to make a non-deterministic selection.
It is di�cult to implement such a complex selective
structure in the distributed environment. There-
fore, we have to �nd a suitable sub-class of the
PNR model that provides a simple selective struc-
ture in the distributed environment.

P3. In order to keep the consistency of the temporal
ordering of execution of the transitions, the sub-
Petri net SP k(t0) simulating the next transition t0

should start to �re after all of the transitions in the
sub-Petri net SP k(t) simulating the current transi-
tions t have �nished to �re. Otherwise, the derived
protocol speci�cation may not work correctly.

P4. If a protocol entity k is not concerned with a tran-
sition t in SS, then t will be replaced by an "-
transition in the PEk to simplify the derivation
and to apply the method in [6] for our method.
The derived protocol speci�cation is equivalent to
a given service speci�cation if the �ring rule of
"-transitions is de�ned in the same as that of "-
moves in the Non-deterministic Finite state Au-
tomata (NFA). However, as de�ned in Section 2.2,
an "-transition can be enabled if it is enabled in
its underlying net (because its guard is \true").
Therefore, we must remove such "-transitions that
have wrong e�ects on the equivalence. In the PNR
model, those "-transitions cannot be removed from
the derived protocol speci�cations easily because
those "-transitions may play synchronous points.
To solve the problem P1, we assume that each mes-

sage used for simulating a transition t has its identi-
�er. Using the identi�er, each protocol entity can know
which transition should be simulated by a received mes-
sage. For the problem P2, we give the restriction 1 in
Section 4 (that is, the underlying net of SS must be a
FC net). The selection can be always done in one place.
Therefore, at the protocol speci�cation level, only one
protocol entity can select for each selection. In Section
5.3 and Section 5.4, we give solutions for the problem
P3 and P4, respectively.



Table 1: Contents of Messages exchanged in SML.

Types Contents
1 the values of registers (or input variables)
2 a request for asking to send the values of registers
3 a request for asking to change the registers' values

a request for asking to send the values of registers
4 necessary for evaluating the guard or executing the

output event of each next responsible protocol entity
a notice which informs that the change of registers'5
values has been �nished
the values of registers necessary for evaluating the

6 guard or executing the output event of each next
responsible protocol entity
a notice which informs that the responsible protocol7
entity has been changed

5.2 Simulation of Each Transition

In this section, we give how each transition in SS is
implemented with PEh1;pi. Here, we denote the simu-
lation principle by SML.

In SML, we assume that the responsible protocol
entity of a transition t (RPE(t)) knows all values of
registers used in the guard and/or output event of t
(if it is an output event) when the responsible protocol
entity starts to simulate the transition t. Since we as-
sume that this assumption holds when each simulation
starts, at the end of simulation of t, all information (the
values of registers used in guards and output events)
necessary for the responsible protocol entities of t � �
is sent during the simulation of the current transition.
Now, suppose that for the transitions enabled in the
underlying net at the current marking M , the respon-
sible protocol entity evaluates these guards, and then
chooses non-determinately a transition t to be executed
from the enabled transitions. Table 1 shows the types
and contents of the messages exchanged in SML.
[Simulation Principle SML]
� The responsible protocol entity of a transition t

(RPE(t)) executes its I/O event.

� The responsible protocol entity RPE(t) sends some
messages to the related protocol entities as fol-
lows.

{ Each protocol entity with the registers whose val-
ues must be changed in the transition t has to know
the values of the registers and inputs necessary for
changing its registers' values. Those values are sent
from RPE(t) if it has them. Those messages are
called type 1 messages. If some of those values are
not held in RPE(t), then RPE(t) sends the request
messages (type 2 messages) to the protocol entities
which have those registers.

{ Some protocol entities can change their registers'
values by themselves. Type 3 messages are sent to
those protocol entities from RPE(t).

{ The next responsible protocol entities of the tran-
sition t (the protocol entities in RPE(t � �)) should

know the values of the registers used in their guards
and output events. RPE(t) sends type 4 messages
to some protocol entities that have such values.

� Each protocol entity which received the type 2 mes-
sage sends the type 1 messages (including the values
of registers) to the protocol entities which need them.

� Each protocol entity which received the type 4 mes-
sage sends type 6 messages (including the values of
registers) to some of the next responsible protocol
entities. If such protocol entities have to change the
values of the registers to be transmitted, the type 6
messages must be sent after changing the values of
registers.

� Each protocol entity which received the type 1 or
type 3 messages changes its registers' values. RPE(t)
should change its registers' values after executing the
I/O event of the transition t.

� Each protocol entity that has changed its registers'
values sends the type 5 messages to all of the next
responsible protocol entities of t.

� If RPE(t) has never sent the type 1, : : :, type 6 mes-
sages, then RPE(t) sends the type 7 messages to the
next responsible protocol entities of t. These mes-
sages are used to inform that the responsible protocol
entity has been changed.

The total number of exchanged messages necessary for
simulating each transition may not be unique in the
case that several messages can be merged into one mes-
sage and a register's value can be sent by several nodes.
Here, we will adopt the total number of exchanged mes-
sages necessary for simulating each transition as the
communication cost (this cost measure is appropriate
in high speed networks) and minimize it. It can be
minimized as follows. We introduce some Boolean vari-
ables. For example, we introduce a Boolean variable
t1 uv Rh whose value is 1 i� a type 1 message includ-
ing the value of the register Rh should be sent from
the protocol entity u to the protocol entity v. Those
Boolean variables are treated as integer variables whose
values are either 0 (false) or 1 (true). We describe the
constraints for those Boolean variables as the integer
linear inequalities. For example, if a non-responsible
protocol entity u must send a type 1 message contain-
ing the register Rh's value to a protocol entity v, the
protocol entity u must receive a type 2 message from
the responsible protocol entity, say w, for asking to
send Rh's value. This constraint is described as an
integer inequality such as t1 uv Rh � t2 wu. We re-
gard the total number of exchanged messages as the
objective function of the 0-1 integer linear programing
problem and calculate its minimum solution. For the
details, see [6].

As an example, for the transition t2 in the service
speci�cation SS in Fig. 2 and the resource allocation �



in Fig. 3, we will construct the sub-Petri nets SP 1(t2),
SP 2(t2) and SP

3(t2) simulating the transition t2 based
on SML (see Fig.4). First, since the protocol entity 2 is
the responsible protocol entity of t2 (RPE(t2)=protocol
entity 2), it evaluates the value of the guard of t2, and
executes the event of t2 (it corresponds to the transi-
tion ta in Fig. 4). the protocol entities 1 and 3 should
change the value of the register R1. They need the
value of R4 for changing their registers' values. Al-
though the protocol entity 1 has it, the protocol entity
3 does not have it. Therefore, the responsible proto-
col entity 2 sends the protocol entity 1 a message Mb

for asking to send the value of R4 to the the protocol
entity 3 (tb). If the protocol entity 1 receives Mb (tc),
then it sends a message Mc which includes the value of
R4 (td) and changes the values of R1 (te) in parallel. If
the protocol entity 3 receives Mc (tf), then it changes

the value of R1 (tg), and sends the protocol entity 1
(the next responsible protocol entity) a message Md

which informs that the change of the register's value
has been �nished (th). Finally, the next responsible
protocol entity 1 receives Md (ti).

5.3 Construction of Protocol Entity Spec-
i�cation

In this section, we derive each PEk by replacing each
transition t in SS with the corresponding sub-Petri net
SP k(t) (SP k(t) may be an "-transition). Fig. 5 shows
that t2 in SS is replaced by the sub-Petri net SP 1(t2)
in PE1. The details are as follows. Here, the sub-Petri
net SP 1(t2) has two types of special transitions. The
�rst type of transitions is called a source transition,
which has no incoming arcs. The another type of tran-
sitions is called a sink transition, which has no outgoing
arcs. SP 1(t2) has two source transitions and three sink
transitions. First, for a given t2 in SS, we make the
copies of each input place pin of the transition t2 as
many as the number of the source transitions (in this
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Transitionsts2
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Figure 5: Replacement of a Transition.

case, two places) like Fig. 5. We also make the copies
of each output place pout of the transition t2 as many
as the number of the sink transitions similarly. Then,
we connect an arc from each pin to each source transi-
tion. We also connect an arc from each sink transition
to each pout. We execute this process for all transitions
in the service speci�cation. In the obtained net, each
sub-Petri net cannot start executing until all of its pre-
vious sub-Petri nets have completely �nished execut-
ing. Also all source transitions in the sub-Petri net can
be enabled simultaneously (from these properties, the
problem P3 in Section 5.1 can be solved). However, if
a given transition t is in a self-loop, this method does
not work well since its input place p1 and output place
p2 are identical (a place p). In this case, we introduce
a new place p0 and a dummy transition t0 which has
an internal event i and a guard \true". Then, we can
remove all self-loops.

The initial marking for the derived PEk is given as
follows. If a place in SS is marked with a token, then
we also mark each of the corresponding places (includ-
ing the copied places) in PEk with a token. Then,
we can derive each protocol entity speci�cation PEk.
Since we have made the copies of some places, the un-
derlying net of each PEk may not be a FC net. How-
ever, it still keeps the liveness and safeness properties.

5.4 Reformation of Protocol Speci�ca-
tions

In our method, if a protocol entity k is not related
to the simulation of a transition t in the SS, then the
transition t is replaced by an "-transition. So each PEk

may contain "-transitions.
As described in Section 5.1, the two rules for �ring

"-transitions are considered, (1) an "-transition t is en-
abled in the PNRmodel i� t is enabled in its underlying
net and there exists a non-"-transition behind t where
the value of its guard is true and (2) an "-transition t

is enabled if t is enabled in its underlying net. For ex-
ample, in Fig. 6, the "-transition t cannot be enabled
until the message Ma is given from the gate g32 (i.e.,
the value of the guard of ta becomes true) if we adopt
the rule (1). On the other hand, t can be enabled inde-
pendent of the transition ta and tb if we adopt the rule

w=Mb

g12?w

g32?w

w=Ma

i

t

at
bt

Figure 6: Firability of Each E-Transition t.



(2). If we adopt the rule (1), then PEh1;pi can simulate
SS correctly. However, the rule (2) is more natural as
the �ring rule for general Petri nets. Therefore, we will
reform PEh1;pi by removing all "-transitions so that we
can adopt the rule (2).

Removal of "-Transitions. In general, an "-
transition may represent a synchronous point in a
system because more than one incoming arcs and/or
outgoing arcs may be connected to an "-transition.
Here, since each sub-Petri net does not contain any
"-transition, we can treat it as a single transition like
the original transition in the service speci�cation.

Fig. 7 shows an example to remove the "-transitions
t4 and t5 in PE2. First, we decompose PE2 (Fig. 7(a))
into two �nite state machines SM1 and SM2 (nets
where each transition has one incoming arc and one
outgoing arc) called SM components (Fig. 7(b)). Then,
we recompose the SM components SM1 and SM2 into
a net PE0

2 where the same name's non-"-transitions in
SM1 and SM2 are merged into one transition while
all "-transitions are not merged. In this case, only the
transitions t1 are merged. In this net, each "-transition
has one incoming arc and one outgoing arc. This means
that all "-transitions do not play synchronous points in
PE0

2. Finally, in the recomposed PE0
2, we delete all

"-transitions t4 and t5 (Fig. 7(d)).
Formally, we remove "-transitions by the follow-

ing three steps. (S1) We decompose each PEk into
strongly-connected �nite state machines (SM compo-
nents) covering PEk where each of the SM components
has exactly one token at its initial marking M0. It is
known that a live and safe FC net can be always de-
composed into such SM components[1]. Although the
way to decompose the net is not unique, the algorithm

works well when we use the same way for decomposing
all protocol entities' speci�cations. (S2) We recompose
the SM components into a net by merging only non-
"-transitions. (S3) Since each "-transition in a PE0

k

1t

p
1

p
2

3t

2t

5t

p4p
3 4t

p
5

p
4

p
3

t1

t4

t5

p
5

2SMp
1

p
2

t1

t2

t3

t5

p
5

1SM

p
1

t2

t3

t1

p
2

p
5

+

p
3

p
4

+ + p
5

(c) Synthesis of State Machines

p
5

p
5

p
1

p
2

t2

t3

t5

p
4

p
3 t4

t5

t1

(a) non-Reduced PE (b) State Machines SM   and SM2 1

(d) Reduced PE 2

2

’

Figure 7: Reformation of PE2.

has exactly one incoming arc and one outgoing arc, it
can be removed by merging its input place and output
place into a single place.

Removal of Redundant Places. By removing "-
transitions, each PE0

k
may contain redundant places,

and they can be removed. For example, the redundant
place p3 + p4 + p5 in Fig. 7(d) can be removed (and
then by replacing each transition with the correspond-
ing sub-Petri net, we can get PE2 in Fig. 4). Some
rules to remove such places can be considered, the de-
tails are omitted (see [8]).

6 Conclusion

In this paper we have proposed a method to de-
rive protocol speci�cations from service speci�cations
of distributed systems described in the Petri Net model
with Registers (PNR model). Many service speci�-
cations of distributed systems can be described nat-
urally in this model since the distributed allocation
of resources is permitted and parallel events and non-
deterministic selective operations can be described in
this model. In [8], we give an example where our al-
gorithm is applied to the \Software Process Modeling
Example Problem" given by Marc Kellner in [7] and
give the correctness proof of our derivation algorithm.
In our algorithm, to simplify the derivation, we restrict
the class of the underlying nets of the PNR model to
live and safe free-choice nets. The underlying nets of
the PNR model for the derived protocol speci�cations
are not free-choice nets, however, selective and syn-
chronous structures in the nets are so simple that the
derived protocol speci�cations can be implemented eas-
ily. To show the usefulness of our approach, we are
planning to implement our derivation algorithm.
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