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Abstract

In this paper, we present a protocol for dynamically main-
taining a degree-bounded delay sensitive spanning tree in a
decentralized way on overlay networks. The protocol aims
at repairing the spanning tree autonomously even if multi-
ple nodes’ leave operations or failures (disappearances) oc-
cur simultaneously or continuously in a specified period. It
also aims at maintaining the diameter (maximum delay) of the
tree as small as possible. The simulation results using ns-2
have shown that the protocol could keep reasonable diameters
compared with the existing centralized static algorithm even
if many nodes’ participations and disappearances occur fre-
quently.

1 Introduction

Recent innovation of the Internet has brought us sev-
eral interactive group applications such as multi-user video-
chatting/conference systems. Since those applications require
broadcast communication from every participant to the others,
some multicast infrastructure among those participants is de-
sired. For such a purpose, peer-to-peer multicast (referred to
as overlay multicast) is a reasonable solution where a span-
ning tree involving all active participants (i.e. peers, referred
to as nodes in this paper) of the application is constructed by
connecting those nodes via unicast channels.

Such an interactive group application is generally delay-
sensitive. Therefore, minimizing the diameter (maximum de-
lay) on an overlay spanning tree is an important issue. Also in
overlay multicast, it is important to consider bandwidth con-
straints around nodes. Since overlay links through a node ac-
tually use the same network interface of the node, the traffic
amount of the node depends on its degree (the number of links
of the node on the tree). So the degree should not exceed the
capability limitation of the node.

In this paper, we present a protocol called MODE

(Minimum-delay Overlay tree construction by DEcentralized
operation). MODE constructs a Degree-Bounded Minimum
Diameter Tree (DBMDT). The construction problem of DB-
MDT is known as NP-hard [1]. Therefore, Ref. [1] pro-
poses a heuristic algorithm called Compact Tree (CT) algo-
rithm which is similar with Prim’s minimum spanning tree al-
gorithm [2]. Since CT algorithm focuses on static and cen-
tralized construction of a DBMDT, it is not suitable to directly
adopt it to the DBMDT problem with nodes’ join or leave op-
erations (or failures) during a session. When some nodes leave
a session, such an algorithm may require many modifications
of the existing tree as well as much computation time in order
to obtain a new tree with a smaller diameter. This may largely
affect continuity of the session.

On the other hand, MODE aims at repairing the existing
spanning tree in a simple, fast and decentralized way when
at most k nodes’ simultaneous or continuous disappearances
occur (k is a protocol parameter). It also aims at shortening
the diameter of the repaired tree. Our experimental results us-
ing ns-2 have shown that MODE could achieve similar diam-
eters with CT algorithm in small computation time and small
amount of control traffic even though MODE is autonomous
and decentralized one.

This paper is organized as follows. Section 2 formulates
the DBMDT problem. In Section 3 and Section 4, our MODE
protocol is presented. Section 6 shows the experimental re-
sults and Section 7 summarizes the related work. Section 8
concludes the paper.

2 Preliminaries

2.1 DBMDT Problem

Hereafter, we call the participant nodes of an overlay tree
simply nodes.

The definition of a Degree-Bounded Minimum Diameter
Tree (DBMDT) is given below. Let G = (V, E) denote a
given undirected complete graph where V denotes a set of
nodes and E denotes a set of potential overlay links which



are unicast connections between nodes. Also let dmax(v) de-
note a degree bound (the maximum number of overlay links)
of each node v ∈ V , and let c(i, j) denote the cost (delay in
this paper) of each overlay link (i, j) ∈ E. DBMDT is a span-
ning tree T of G where the diameter of T (the maximum cost
of the paths on T ) is minimum and the degree of each node
v ∈ V (denoted as d(v)) does not exceed dmax(v). Hereafter,
dmax is used to represent the maximum degree bound of all
the nodes (i.e. maxv∈V {dmax(v)}).

2.2 MODE Protocol Overview

MODE provides a decentralized heuristic algorithm that
constructs a DBMDT, under nodes’ participations and disap-
pearances. In MODE, two logical phases called a collection
phase and a normal phase are repeated alternately. The period
of the collection phase is very short (e.g. less than two sec-
onds in our experiments in Section 6) while that of the normal
phase is relatively long (e.g. one minute).

In a normal phase, MODE copes with nodes’ two kinds of
operations, (i) join and (ii) leave/failure (referred to as disap-
pearance), in a decentralized way. We consider nodes’ disap-
pearances as a good occasion to shorten the diameter of the
current tree. Therefore, whenever a disappearance happens,
the “center nodes” of the isolated sub-trees are re-connected.
Here, the center node of a tree is one which is the closest to the
center of the diameter path. Also, the repair procedure should
be done quickly enough to prevent data delivery from being
suspended for a long time. For such a purpose, each node u
collects in the precedent collection phase the information of
sub-trees (such as their center nodes) which will be isolated
if a neighboring node v disappears. This collection is done
in a recursive (incremental) way. The collected sub-tree in-
formation is used for quick and efficient execution of repair
procedures in the normal phase. Also, we have made MODE
tolerant to at most k nodes’ disappearances in a normal phase.

2.3 Generic Assumptions

Nodes may disappear from a tree at any timing. In order to
discuss the consistency of our protocol, we give the following
assumptions concerned with the disappearances of nodes.

G1. Any node’s disappearance does not affect the physical
(underlying) network, and each node can immediately
detect its neighboring node’s disappearance.

G2. The initial node never disappears and each new node
which wants to join a tree knows the network address
(e.g. IP address) of this node.

This does not mean that the initial node plays a role of
a centralized node. It only works as a well-known node
required for new nodes’ participations.

G3. A node’s disappearance never occurs that loses any con-
trol message.

3 Collection Phase Protocol

For simplicity of discussion, we explain our collection
phase protocol without assuming any disappearance during
collection phases. To validate the protocol under some dis-
appearances, see Section 5.1.

3.1 Initiating Collection Phase

As we mentioned in the previous section, we assume that
the initial node never disappears (see assumption G2). This
node is called the root node. The root node starts a collection
phase for every (regular) interval by broadcasting synchroniza-
tion messages on the current tree.

Recall that dmax denotes the maximum degree bound of
all the nodes. When the root node (say node a) sends syn-
chronization messages to its neighboring nodes, it assigns a
node ID 0 to itself and also assigns node IDs 1,...,d(a) to those
neighboring nodes. Similarly, if a node v receives a synchro-
nization message from a neighboring node and if it knows that
node ID n is assigned to itself, it assigns node IDs starting
from n × dmax + 1 up to n × dmax + d(v) − 1 to the rest of
its neighboring nodes when it sends messages to them. Finally
all the nodes in the tree have unique node IDs.

Note that these IDs are used to identify parent-child rela-
tionship between neighboring nodes (a smaller ID indicates a
parent) as well as to deliver control messages on trees in nor-
mal phases.

3.2 Sub-tree Information

For a pair of two adjacent nodes u and v, let Tu,v denote
the sub-tree rooted at node v and isolated by node u’s disap-
pearance.

Each neighboring node v of node u collects the information
of all the sub-trees which will be isolated by node u’s future
disappearance. The sub-tree information of Tu,v includes the
followings.

• v’s network address (e.g. IP address) and node ID

• dia(Tu,v) : the diameter of Tu,v

• diaNode(Tu,v) : a set of (k + 1) nodes which are the
candidates of the center node1. For each node z ∈
diaNode(Tu,v), its residual degree dres(z) = dmax(z)−
d(z), network address and node ID are also included.

3.3 Collecting Sub-tree Information

A node enters a collection phase if it has received a syn-
chronization message from its parent and sent synchronization
messages to all its children.

A leaf node does not send synchronization messages. In-
stead, when it receives a synchronization message, it enters

1Having k + 1 candidates in each sub-tree means that there exists at least
one node in diaNode(Tu,v) which is alive even if k nodes disappear.



a collection phase and sends a collection message to its par-
ent. Each non-leaf node in a collection phase acts as follows.
Whenever it receives collection messages from all the neigh-
boring nodes except one neighboring node (say x), it sends a
collection message to node x. Each node u goes into a nor-
mal phase if, for each its neighboring node v, u has received a
collection message from v and has sent a collection message
to v. This means that in a collection phase, 2(n − 1) collec-
tion messages are exchanged on the tree. We will explain how
information collection is done by those collection messages.

Each node v is responsible for calculating the sub-tree in-
formation of Tu,v and includes the information into the col-
lection message from node v to node u. Due to the recur-
sive definition of sub-tree information presented in this sec-
tion, node v can calculate the sub-tree information of Tu,v if
it receives collection messages from all the neighboring nodes
(say w1, ..., wd(v)−1) except u. For the recursive definition, we
introduce the following auxiliary parameters for each sub-tree
Tu,v.

• depth(Tu,v) : the maximum delay of Tu,v from v.

• depthNode(Tu,v) : the node list of the maximum
delay path of Tu,v from v. For each node z ∈
depthNode(Tu,v), its residual degree dres(z) = dmax −
d(z), network address and node ID are also included.

We first consider to define them in a recursive way. Here “@”
denotes the concatenation of node lists.

depth(Tu,v) = max
1≤j≤d(v)−1

{depth(Tv,wj) + c(v, wj)}

For wj which maximizes the above,

depthNode(Tu,v) = [v]@depthNode(Tv,wj)

dia(Tu,v) can also be defined in a recursive way.

dia(Tu,v) = max
1≤j≤d(v)−1

{dia(Tv,wj), jointdepth}

where

jointdepth = max
1≤x,y≤d(v)−1

{depth(Tv,wx) + c(v, wx)

+depth(Tv,wy) + c(v, wy)}
Here, wx and wy denote two different nodes in
w1, ..., wd(v)−1. The diameter of Tu,v is the maximum
value of (i) the diameters of its sub-trees and (ii) the sum of
the two longest depths from node v.

Finally, diaNode(Tu,v) can be defined as follows.

diaNode(Tu,v)

=

⎧⎪⎪⎨
⎪⎪⎩

diaNode(Tv,wj ) (if dia(Tu,v) = dia(Tv,wj ))

(k + 1) nodes near center node on “jointpathlist”
(if dia(Tv,w) = jointdepth)
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Figure 1. Sub-tree Information Collection
where

jointpathlist

= reverse(depthNode(Tv,wx))@[v]@depthNode(Tv,wy)

and “reverse” is the reverse function of a list2. If the diameter
of Tu,v is the same as that of a sub-tree Tv,wj , the correspond-
ing diaNode(Tu,v) is the same as that for Tv,wj . On the other
hand, if the concatenation of two maximum delay paths from
v becomes Tu,v’s diameter path, we select (k + 1) candidate
nodes from the nodes on the new diameter path.

The collection message sent from v to u includes:

• the sub-tree information of Tu,v,

• depth(Tu,v) and depthNode(Tu,v) and

• the sub-tree information of Tv,w for each w except u.

Therefore, after node u receives/sends collection messages
from/to all its neighboring nodes, node u knows each sub-tree
information of Tv,w where v is a neighbor of node u and w is
a neighboring of node v. Then it enters a normal phase.

3.4 Example

Fig. 1 shows how collection messages are exchanged. Ini-
tially, nodes 5, 25 and 105 send the information (and auxiliary
parameters) of the sub-trees T1,5, T6,25 and T26,105 respec-
tively, since they are the leaf nodes (here we omit the case for
leaf nodes 9 and 10). Node 26 receives the collection message
from node 105, calculates the sub-tree information (and auxil-
iary parameters) of T6,26 and sends it to node 6, together with

2If diaNode(Tu,v) has less than k + 1 nodes, node v selects the rest of
nodes from diaNode(Tv,wz ) as many as possible until diaNode(Tu,v) has
k + 1 nodes or no node is left in any diaNode(Tv,wz ).



the sub-tree information of T26,105. If node 6 receives collec-
tion messages from nodes 25 and 26, it calculates the sub-tree
information (and auxiliary parameters) of T1,6 and sends it to
node 1 together with T6,25 and T6,26’s sub-tree information. If
node 1 receives the collection messages from nodes 5 and 6, it
calculates the sub-tree information (and auxiliary parameters)
of T0,1 and send it to node 0.

Similarly, node 1 receives the collection message from
node 0. If it receives the message, it calculates the sub-tree
information of T6,1 and T5,1 and sends them to nodes 6 and
5, respectively. Since node 1 knows all the three sub-tree in-
formation of T6,25, T6,26 and T6,1, it knows the required in-
formation for the repair procedure of node 6’s disappearance.
Note that by exchanging those information, nodes 25 and 26
can also know the same information.

4 Normal Phase Protocol

This section presents DBMDT construction protocol which
consists of two procedures to process join and disappearance
of nodes in normal phases. We guarantee that a spanning tree
is maintained under at most k nodes’ disappearances. We
make the following two assumptions concerned with normal
phases to make discussion simple. Later we try to relax these
two assumptions (see Section 5.2).

N1. For each (non-leaf) node v that disappears, there exists
at least one neighboring node which does not disappear
during the repair procedure of v’s disappearance.

N2. Once a node is selected as a repair master or a candidate
node to connect to the repair master, it does not disappear
until it completes its task.

4.1 Join Procedure

The join procedure is simple. A new node which wants to
join the current tree T first asks the root node the possibility
to connect to it3. If it is possible, the new node connects to
the root node. If there is no residual degree or if the delay be-
tween those nodes is greater than a certain threshold, the root
node lets the new node know the network address of a (ran-
domly selected) neighboring node. Then the new node asks
the neighboring node the possibility by the same procedure.
By iterating this procedure, this node can join the current tree.

The reason to take this approach is that we would like to
keep the procedure as simple as possible for fast processing
of join requests. Later we show that this join process does
not enlarge the diameters of trees, and is processed quickly
enough.

3This is because we assume that a new node only knows the root node as a
well-known node (see assumption G2). To avoid access concentration, several
well-known nodes may be assumed rather than a single node.
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Figure 2. Repair Procedure (single disappear-
ance)

4.2 Repair Procedure for Single Disappearance

Let v denote a node which has disappeared, u denote v’s
parent and wj denote v’s j-th child (1 ≤ j ≤ d(v) − 1) where
d(v) is the current degree of node v. Also, let R(v) denote the
repair procedure for node v’s disappearance. We first explain
R(v) without considering other disappearances, and then con-
sider them in the next section.

We illustrate the behavior of the repair procedure for a sin-
gle (non-leaf) disappearance in Fig. 2. For node v’s disappear-
ance, its parent (node u) activates the repair procedure and se-
lects a node from diaNode(Tv,u) which is the closest to the
center node and has at least one residual degree. This node is
called the repair master. Node u sends the information of sub-
trees Tv,u and Tv,wj (1 ≤ j ≤ d(v) − 1) to the repair master
(see Fig. 2(a)). Using the node ID of the repair master, this de-
livery is done on the tree according to the algorithmic routing
in Ref. [9]. For each sub-tree Tv,wj (1 ≤ j ≤ d(v) − 1), the
repair master selects a node from diaNode(Tv,wj ) which also
resides near the center node and which has at least one resid-
ual degree. Then the repair master establishes an overlay link
to the node (Fig. 2(b)). Note that if the residual degree of the
repair master is not enough to accommodate all the sub-trees,
the repair master delegates the repair of some sub-trees to its
neighboring nodes.

By this procedure, nodes near the “center” of the sub-trees
are connected, and the diameter of the repaired tree is expected
to be equal or smaller than before.

4.3 Repair Procedure for Multiple Disappearances

4.3.1 Additional Disappearance during Repair Proce-
dure

We first consider how another node v ′’s disappearance and its
corresponding repair procedure R(v ′) affect R(v). Node v′

can be either one of the followings; (1) v’s parent, (2) a node
on the route from the parent u to repair master, including re-
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Figure 3. Disappearance of Node v’ during Repair Procedure R(v)
pair master, (3) a center node of a sub-tree, and (4) none of
the above nodes. For each case, we extend R(v) to make it
tolerant to the disappearance of v ′. Note that if v′ disappears
after v′ completes its role in R(v) in cases (1), (2) and (3), or
if v′ matches case (4), R(v) and R(v ′) can be regarded as two
independent procedures. See Section 4.3.2 for those cases.
[Case 1: node v′ is the parent of node v.]

We make R(v) tolerant to this case as follows. Assump-
tion N1 (given at the beginning of this section) ensures that
at least one child is being alive at that time. So whenever
node v disappears, we let each child of v check whether the
parent u of v is alive or not and also whether it is the el-
dest child (i.e. with the smallest ID) of the children of v
which are alive. Then the eldest child wx selects the alter-
native repair master from diaNode(Tv,wx) (Fig. 3(a)). The
alternative repair master works as a repair master and con-
nects Tv,wj (1 ≤ j ≤ d(v) − 1) but leaves Tv,v′ unconnected
(Fig. 3(b)). Since R(v ′) and R(v) are not concerned with
each other, R(v′) considers that the sub-tree Tv′,v exists as it
is. Therefore, R(v)’s alternative repair master is required to
connect only Tv,wj (1 ≤ j ≤ d(v) − 1).

The above extension also makes R(v) tolerant to a se-
quence of disappearances of nodes v1, v2, ... and vh occurs
where vi−1 is the parent of vi. For the disappearance of vi, a
node in the generation of vi+1 is alive (assumption N1) and ac-
tivates R(vi) on behalf of vi−1. This means that the sub-trees
rooted at the children of vi are connected. Since assumption
G2 ensures that there finally exists the root node which is al-
ways alive, the parent of v1 always exists. Consequently the
sequence of disappearances can be repaired.
[Case 2: node v′ is a node on the route from the parent u
of v to the repair master, including the repair master.]

In this case, we let the node just before v ′ be the alternative
repair master. For example, in Fig. 3(c), node w ′

2, which is the
node just before node v ′, becomes the alternative repair master
and the tree is repaired (Fig. 3(d)).
[Case 3: v′ is the center node of a sub-tree.]

This is an easy case. Any Tv,w has k + 1 nodes in

diaNode(Tv,w). Otherwise Tv,w has only less than k + 1
nodes. Therefore, we let the repair master of R(v) select an-
other node from diaNode(Tv,w).

4.3.2 Additional Disappearance after Repair Procedure

Then we consider the case that R(v ′) occurs after R(v).
After R(v) is completed, the isolated sub-trees are con-

nected using new overlay links. Thus R(v ′) can repair the
tree as in the case of a single disappearance. What we should
consider here is that part of sub-tree information and node IDs
does not match the current tree topology after R(v). Note that
for each sub-tree information which R(v ′) may use is can-
didates of center nodes where at least one node is still alive
under less than k disappearances. Even though they may not
be the “center” nodes now, there are still the candidates to re-
cover the connectivity. On the other hand, inconsistent node
IDs may lead to wrong routing in delivering a message to a
repair master and wrong decision of initiator of R(v ′), which
affects the consistency of the tree.

To avoid such a problem, We let R(v ′) never use new over-
lay links generated by R(v) (i.e, we let R(v ′) only use the
original links which have existed since the beginning of the
normal phase). Two nodes connected by an original link still
keep node ID consistency, and if R(v ′) faces missing node,
this can be regarded as the same cases as in the previous sec-
tion.

5 General Cases

In this section, we consider the cases where disappearances
occur in collection phases and where disappearances in normal
phases do not follow the assumptions given at the beginning
of Section 4.

5.1 Disappearance in Collection Phase

In Section 3, we have assumed that no disappearance oc-
curs in any collection phase. However, even though a collec-
tion phase takes relatively short time, a few nodes may disap-
pear during the phase.
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In essential, any node’s disappearance results in isolated
sub-trees. We can consider two cases where (i) the nodes in an
isolated sub-tree (say t) have already received synchronization
messages and their node IDs have been refreshed and (ii) they
have not received the synchronization messages yet. In both
cases, we let exactly one of the nodes in t re-join the tree T
(see Fig. 4) in the same way as we will explain in Section
4.1 in order to restore t to the current tree T . Also we have
to make sure that this isolation is in the collection phase since
any isolation in a normal phase will be dissolved by the repair
procedure.

In case (i), the nodes around the disappearances can de-
termine that the disappearances were in the collection phase
only if they had not completed all the collection messages’ ex-
change yet at that time. Then the root node of t (determined by
the refreshed node IDs) re-joins the tree. On the other hand, in
case (ii), the nodes in t cannot know whether this isolation oc-
curred in the collection phase or in the previous normal phase.
Remember that the root node sends synchronization messages
at regular intervals. We assume that the others know the in-
tervals. If the isolation is dissolved by the repair procedure,
the synchronization messages arrive before the regular inter-
val has past. If not, each node in t understands that it has been
isolated in the collection phase. Then the nodes in t execute
a certain leader election in t (it is really simple because t is a
spanning tree) and the selected node re-joins the tree T .

Note that for nodes’ disappearances, we let new leaf nodes
initiate collection messages if they have not sent it yet so that
every node can know the end of the collection phase. However,
some information may be missing from collection messages.
Two cases are possible (see Fig. 4). In both cases, the nodes
in T and t may not be able to recognize each other due to the
missing information. However, this situation is the same as
that in Section 4.3.2.

5.2 Relaxing Assumptions in Normal Phases

If a disappearance v ′ does not follow either one of assump-
tions N1 and N2, some isolated sub-trees may exist in R(v)
since some nodes that should play a certain role in R(v) have
disappeared. In the collection phase, by using the synchro-
nization message timeout as we discussed in Section 5.1, such
isolation can be detected by the nodes in the sub-trees. How-
ever, in the normal phase, such isolation may be dissolved af-

ter the next collection phase and such a long isolation may be
intolerable.

One possibility to avoid such a long isolation is that the
root (initial) node sends probe messages in every short period.
Then, the root nodes of the isolated sub-trees can recognize
their isolation, and they can re-join the current tree by asking
the root node. Some other solutions may be possible.

6 Performance Evaluation

6.1 Simulation Setup

We have implemented our MODE protocol on ns-2. In our
experiments, networks with about 400 physical nodes have
been generated and used as underlying networks. We have se-
lected 200 nodes as overlay participant nodes. The end-to-end
delay ranges from 80ms to 120ms (the average is 100ms).

Considering practical situations, we have prepared the fol-
lowing scenario that simulates a real-time session in collabora-
tive applications such as a video-based meeting or groupware.
Note that we set the interval between collection phases to 60
seconds. Also k (the maximum number of nodes which are
allowed to disappear in each normal phase) was set to 5 (2.5%
of the entire nodes). The degree bound was set to 5 for all the
nodes. The scenario is as follows. (i) The session period is 180
seconds. (ii) Each of 200 nodes joins the session only once and
eventually leaves the session. (iii) Within the first 30 seconds,
about 60 nodes join the session. (iv) From 30 seconds to 140
seconds, additional joins are processed. Also some existing
nodes leave the session. There are two collection phases at 60
seconds and 120 seconds. (v) After 140 seconds, no node joins
and about 40 nodes leave the session (consequently the num-
ber of disappearances in each normal phase greatly exceeds
k).

In Fig. 5 and Fig. 6, we have shown the number of
nodes on the tree at every second together with the numbers
of join/leave operations to make it facilitate to see the dynam-
ics of the metrics according to the scenario. Note that even
though the number of disappearances in each normal phase
greatly exceeds k in the scenario, no island was created in
MODE protocol in the experiments.

6.2 Implementation of Compact Tree Algorithm

As comparison, we have also implemented the centralized
algorithm presented in Ref. [1] (called CT algorithm) on ns-2.
The algorithm starts with the minimum delay (overlay) link as
the initial tree, and adds the rest of links one by one so that
we can minimize the diameter of the resulting tree using the
entire tree knowledge.

Since CT algorithm can construct a spanning tree with a
near optimal diameter value, we have used it as a benchmark
to see the optimality of diameters in our MODE protocol. We
have also used it to confirm the efficiency of MODE in term
of the repair costs. For such a purpose, we adopt the following



 0

 100

 200

 300

 400

 500

 600

 700

 800

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100
 110
 120
 130
 140
 150
 160
 170
 180
 190
 200

D
ia

m
et

er
 (

m
s)

# 
of

 N
od

es
 (

on
 tr

ee
)MODE

CT
# of Nodes on Tree

 0  20  40  60  80  100  120  140  160  180
 0

 3

 6

# 
of

 J
oi

n 
an

d 
Le

av
e 

/ s
ec

.

Time (ms)

Join
Leave

Figure 5. Dynamics of Diameters
implementation policy of CT algorithm to make it work with
nodes’ join/leave operations. (i) For a new node’s join, the op-
timal point (node) that minimizes the diameter of the resulting
tree is calculated using the entire tree knowledge. (ii) In case
of a node’s disappearance, the entire tree is scraped and built
up again by CT algorithm so that we can obtain a near optimal
solution.

6.3 Experimental Results

[Diameter] We have measured the diameters of the trees at
every one second. The result is shown in Fig. 5.

We can see that MODE could archive reasonable diame-
ters. The average diameter is only 1.09 times and in case
of maximum difference the diameter is still 1.25 times as
large as those in CT algorithm. In particular, throughout the
session, MODE could follow the dynamics of diameters in
CT algorithm. Considering the fact that CT algorithm opti-
mized the diameter for every node’s disappearance, we can say
that MODE could archive almost the optimal diameters even
though it is designed in an autonomous and decentralized pro-
tocol. Also we can see that as the number of node decreases,
the diameter became small at the end of the session.

Note that if we use not a total delay but a hop count as a
diameter, MODE could archive almost the same values as CT
algorithm. The diameter difference between MODE and CT
algorithm comes from the optimality of delays of links which
constitute diameter paths. This means that the diameter differ-
ence may not become so large even in large-scale networks.

[Repair Cost] The repair cost in MODE for a repair proce-
dure is the number of overlay links which are established and
disconnected during the procedure. On the other hand, the
cost in CT algorithm is the differential of two trees’ overlay
links before and after the disappearance. Since the repair pro-
cedure in CT algorithm is “scrap-and-build”, the cost becomes
large. Therefore it may seem unfair to compare it with MODE.
However, we would like to see good balance of reasonable di-
ameters and low repair costs (thus quickly repair is possible).
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Figure 7. Join/Repair Procedures’ Processing
Time Distribution

For such a purpose, we have compared the following items.

MODE CT
total repair cost (through the scenario) 434 7283

# of repair procedures applied 149 149
average repair cost 2.9 48.9

Obviously, our protocol could archive low repair costs.
[Traffic] We have measured the control traffic amounts on

the tree. The result is shown in Fig. 6.
Due to small message complexity, MODE only required

about 1Kbytes/sec (8Kbps) in each collection phase (we can
see the two peaks around 60sec. and 120sec.). Even for a
series of join procedures, MODE needed small traffic amount
(see between 0sec. to 60sec.). Totally the traffic amount in
MODE protocol is very reasonable.

Note that in the underlying network, the traffic amount is
expected to be at most dmax (=5 in the experiments) times
as large as that on overlay trees, because the link stress (the
number of packet duplications on a physical link) around the
end hosts is dmax due to the nature of the overlay network.
However, in our case, such a value is still reasonable enough.



[Time for Procedure Execution] Finally, we have mea-
sured the time required to execute the join/repair procedures.
Their distributions are shown in Fig. 7.

We can see that almost all join/repair procedures only re-
quired at most 0.7 or 0.8 seconds. The expected average values
of the join and repair procedures are 0.47 and 0.49 seconds,
respectively. From the results, we can say that the procedures
were processed quickly enough.

7 Related Work

Most researches of application layer multicast pursue the
stability (i.e. fault-tolerance) and efficiency of overlay multi-
cast trees under the constraints of bandwidth and delay. For
example, HBM [3] mainly considers how to make backup
links in a centralized way for the failure of a node. ALMI [4]
proposes a centralized algorithm for constructing minimum
spanning trees. Yoid [5] is similar to ALMI, however, Yoid
together uses shared tree connection and mesh-like connec-
tion for robustness. Narada [6] considers mesh-like overlay
networks where a shortest path tree per source is constructed.
NICE [7] considers hierarchical topology where leaders orga-
nize their logical sub-domains.

Our MODE protocol is different from the above approaches
in the following points. (1) Autonomous and decentralized
organization of trees. Most protocols take centralized ap-
proaches, and decentralized approaches are sometimes con-
sidered to be ineffective because they increase protocol com-
plexity. However, in our case, we show that decentralized in-
formation collection is very effective for our DBMDT prob-
lem with dynamic join/leave activities, because it requires very
small amount of control traffic and simple operations. (2) Tree
optimization. Most approaches mainly focus on their proto-
col frameworks and do not consider the optimization of trees.
ALMI considers minimum spanning trees, but they are com-
puted in a centralized way using the entire knowledge. (3) Tol-
erance to multiple node failures. We consider multiple nodes’
disappearances in a distributed environment and validate the
soundness.

Ref. [1] treats the DBMDT problem, however, as we stated
in Section 1, only a centralized heuristic is presented. To our
best knowledge, a recent paper, Ref. [8], only presents a dis-
tributed protocol called OMNI to construct DBMDT. How-
ever, the approach of OMNI is very different from our MODE
protocol. OMNI iterates localized refinement operations based
on SA, while our refinement is global and based on the col-
lected diameter information. Due to the nature of design,
OMNI seems to need less traffic than MODE but need more
local operations. It is interesting to see difference between
OMNI and MODE, and it is part of our ongoing work.

8 Concluding Remarks

In this paper, we have proposed an autonomous and decen-
tralized protocol called MODE for dynamically constructing a

degree-bounded delay sensitive multicast tree on overlay net-
works where simultaneous (continuous) join/leave activities of
nodes is considered.

We have not mentioned yet the complexity of MODE. In
a collection phase, (n − 1) synchronization messages and
2(n − 1) collection messages are delivered on the tree. Then
we look into the size of a collection message. The number
of sub-trees whose information is contained in the message is
at most dmax. The message also contains the depth informa-
tion, whose size depends on logdmax

n in average and n in the
worst (but rare) case where n denotes the number of nodes.
Therefore, the message size complexity is O(n+ k ∗ dmax) in
the worst case. We have shown that control traffic was about
8kbps in each collection phase under a hundred of nodes. Re-
garding time of a collection phase, broadcast of synchroniza-
tion messages takes the time of the diameter and exchange of
collection messages on a tree does also in the worst case, the
total time required for a collection phase is at most twice of
the time of the diameter. In our experiments, the diameter was
less than 1 second and therefore the collection phase period
was less than 2 seconds.

Implementing MODE in a real environment is part of our
future work.
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