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ABSTRACT

Our research group has developed electronic triage tags for
measuring vital signs of patients at critical accidents or dis-
aster sites. Although they have wireless networking facilities
to transmit the data to a remote server, it is helpful for doc-
tors at the sites to display the vital signs on their visions
by augmented reality. For this purpose, we need recognize
identification numbers (IDs) of those tags in doctor’s vision
to obtain the vital signs of the patients from the remote
server. In this paper, we propose image sensor communi-
cation for ID recognition using embedded cameras in com-
mercial off-the-shelf mobile devices. An LED is attached to
a patient and controlled to send the patient ID by blinking
patterns. In order for avoiding bit losses and errors due to
jitter and capture delays, we derive a necessary and suffi-
cient condition for image capturing intervals. Moreover, we
have designed an image sensor communication system us-
ing Manchester code for robustness in terms of clock drift.
Through experiments using a prototype, we have confirmed
the proposed system can recognize more than 94% of 8 bit
IDs in 4.5 seconds on average.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complezity mea-
sures, performance measures

Keywords

Augmented Reality, Image Sensor Communication, Manch-
ester Code

1. INTRODUCTION

Many researchers have proposed applications in wireless
networks for various types of objectives. One of such emerg-
ing applications is wireless networks for supporting disaster
rescue operations[3, 1, 4]. In our project, we have developed
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Figure 1: Target Application Overview

an electronic triage system called eTriage[4]. In eTriage, net-
worked electronic triage tags that are attached to patients
collect their vital signs and transfer them to a remote server.
The tag consists of a small sensor node called SunSPOT
and a vital sensor, and thus has limited capability due to
hardware limitation. In this system, doctors need access to
information about patients. For this purpose, it is helpful
to indicate patient information in doctor’s vision by using
Augmented Reality (AR) as shown in Fig. 1. A doctor holds
a camera of a smartphone or a head-mounted display on pa-
tients in his/her vision. Then patient IDs are recognized and
sent to the server. According to the corresponding patient
information returned from the server, the system displays
the information on the doctor’s vision by AR. In this man-
ner, the doctor can understand the correspondence between
patient information and physical patients in his/her vision.
To this objective, we need recognize identification numbers
(IDs) of patients (tags) in doctor’s vision.

There are two categories to recognize objects in AR: mark-
erless methods and marker based methods. Markerless meth-
ods[2] rely on natural features of target objects such as edges
and corners. For our objective, it is impossible to find differ-
ences in natural features between the electronic tags. On the
other hand, marker based methods assume fiducial markers
attached to objects. Fiducial markers such as square mark-
ers[9] are widely used because of its simplicity. However,
for object recognition at a long distance, they require large
markers which are impractical to stick on objects. For such
situations, using Light-Emitting Diodes (LEDs) as fiducial



markers is an alternative[10, 5, 6, 7]. The great advantage
of LED markers is that they are small and recognizable at
a long distance although LEDs require power supply.

In our target environments, electronic triage tags are at-
tached to patients at a disaster site such as a first-aid station.
In this situation, we assume tens of patients exist in doc-
tor’s vision and recognition of patients more than 10 meters
away is required. For this reason, we choose LEDs as fidu-
cial markers. Some existing work has developed dedicated
hardware for this purpose. For example, Ref. [5] uses a
dedicated CMOS image sensor to capture brightness of each
pixel quickly. Picapicamera[7] developed by CASIO exploits
LED color information for encoding. Some others combine
LED blinking with network communication for synchroniza-
tion between LEDs and a decoder[10]. However, synchro-
nization causes delays if multiple decoders simultaneously
need recognize targets.

Our goal is ID recognition of electronic triage tags more
than 10 meters away by using off-the-shelf mobile devices.
In our method, LED markers with a 1 cm diameter are used
since the electronic tags are small and the capacity of battery
is limited. We only rely on brightness information and do
not use color information to make the recognition available
for low quality cameras. We attach an LED to the electronic
tag, and control its blinking pattern by the SunSPOT to
transmit its unique ID. Decoders recognize LEDs and track
LED blinking patterns for decoding. The challenge is how to
handle delays due to timing jitter at transmitters and image
capturing delays at decoders. Therefore, we have designed
an image sensor communication system using Manchester
code[8]. Manchester code enables us to recover clock at de-
coders since each bit always has one transition. Our con-
tribution is twofold. Firstly, we have derived the necessary
and sufficient condition for decoding without bit losses and
errors considering clock drift between transmitters and de-
coders. Secondly, we have confirmed the correctness of the
derived condition through experiments using a prototype.

We have implemented the prototype for evaluation. A
laptop with an web camera is used for a decoder, and an
LED with a diameter of 1 cm is attached to a SunSPOT
as a fiducial marker. The experiments have been conducted
in bright and dark conditions with decoder’s positions at
distances of 1, 8, and 15 meter(s) away from the LED. From
the results, we have confirmed our system can recognize 94%
of 8 bit IDs within 4.5 seconds on average.

2. SYSTEM ARCHITECTURE

2.1 Assumptions

We assume patients are treated at an indoor first-aid sta-
tion near a disaster site. This indicates a doctor can see tens
of patients in a region of which the size ranges from meters
squared to ten meters squared. Thus 8 bits are enough to
assign unique IDs to each patient in doctor’s vision. Even
if there are hundreds of patients, it is suffice for obtaining
patient information from a server to assign unique IDs to
each patient in single doctor’s vision. This means we may
dynamically change ID assignment using positions and ori-
entations of doctors in order to avoid ID collisions in single
doctor’s vision. A doctor can obtain information about pa-
tients in his/her vision by sending recognized IDs with the
current position and orientation to the server. In this paper,
ID assignment is out of scope. We focus on ID recognition
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Figure 4: Clock Drift Between Transmitter and De-
coder

in single doctor’s vision. We also assume doctors stop when
they recognize patient IDs and patients do not move.

2.2 Manchester Code and Preamble

As we mentioned earlier, clock drift is not negligible due to
delays caused by jitter at transmitters and capturing delays
at decoders. Hereafter, we denote the bit period as f. Figure
2 shows representation of data 011 in Manchester code. As
we can see, every single bit always has one transition at the
middle of each bit period. Because this property enables
decoders to recover clock signals, Manchester code is robust
in terms of clock drift.

We also need a preamble to indicate the start of ID bits.
It is desirable to shorten a preamble as much as possible
because a low baud rate is only to be expected due to hard-
ware limitations. Therefore, we define a preamble as shown
in Fig. 3. The preamble includes the turned off state having
length of 3/2f which never appears in Manchester code.

2.3 Clock Drift and Decoding Interval

We now consider details of clock drift. The above two
waves in Fig. 4 show an ideal wave and the wave transmitted
by the LED. A SunSPOT controls the state of the LED every
f/2. However, in the transmitted wave, timings of the state
transitions become €77 earlier or later due to timing jitter.
We denote the expected lower and upper bounds of the jitter
per f/2 as X% and 1%, respectively.

A decoder reconstructs the transmitted wave by intermit-
tently capturing images. The capture timings are shown by
arrows in Fig. 4. The intervals of capture timings are unsta-
ble due to hardware limitation. The observed wave at the
decoder delays by £'® after each state transition as shown
in the bottom in Fig. 4. This is because the decoder recon-
structs the state transitions of the transmitted wave at the
timings when the captured states are opposite to the pre-



vious states. For this reason, each period of turned on/off
states may be shorter or longer than the corresponding pe-
riod of the transmitted wave. Let €%2_ denote the upper
bound of the intervals of the capture timings. Then the
range of delay £ is [0,£5%,].

The problem caused by the jitter and the capture delays
is that we may not be able to distinguish transitions at the
middle of bit periods from those at the beginning of bit pe-
riods. We let T, represent the elapsed time since the last
decode timing. From the bounds of the jitter and the cap-
ture timing delays, the longest period observed by a decoder
corresponding to period f/2 in ideal waves is

f/24ehs, +eke,.

Period T. of observed waves corresponds to period f/2 in
ideal waves as long as T, does not exceed the above period.
In reverse, when T¢ corresponds to f/2, T. does not exceed
the above period. Similarly, the shortest period correspond-
ing to f in ideal waves is
f + Egzzn - e'rR;LCtL‘za:'

If period T. exceeds the above period, T of observed waves
corresponds to period f in ideal waves, and vice versa.

According to the above conditions, we introduce decod-
ing interval I. I indicates the time period that a decoder
has to wait before decoding. If and only if T, exceeds I,
the observed transitions are decoded. Therefore, I has to
be greater than the period corresponding to f/2 and less
than the period corresponding to f. Thus the necessary and
sufficient condition for decoding without bit losses/errors is

Decode the last transition when T, > [
Tx

24 Light Detection and Tracking from Cap-
tured Images

There are two steps for ID recognition: light detection
and tracking of blinking patterns. For the light detection,
we scan every pixel and extract pixels that have brightness
greater than the threshold Yrm. In extracted pixels, we
regard neighboring ones as single light | and merge such
pixels. Coordinate p; = (zi,y;) and radius r; of [ are derived
by computing the smallest circle C; that includes all pixels
composing [. We define p; and r; as the center and radius
of C) respectively. In order for noise filtering, we eliminate
l if r; is larger than the threshold rrg, which is empirically
set by capturing an image of a turned on LED at a short
distance. Finally, the detected lights are added to light list
S with their coordinates and radii.

The next step is tracking of the blinking patterns of each
light [ € S. For this purpose, we identify the same light in
successive captured images. Suppose light [ is in an image
and light m is in the successive image. We regard [ and
m are the same light if the distance between p; and p,, is
less than I’s radius r;. In this case, we do not add m to
S but overwrite I’s coordinate and radius by p., and 7.
Decoding requires tracking the periods of the turned on/off
states for each light [. Therefore, elapsed time ¢; and current
light state s; for [ are also recorded in S. t; represents the
elapsed time since [ becomes current state s;. s; indicates
the state of either turned on or off.

Note that we have to deal with the computation time for
the light detection because it scans all pixels. To reduce the

Start decoding

Figure 5: Preamble State Transition Diagram

overhead, the light detection is conducted once every f/2
while the tracking is processed for every captured image.

3. DECODING PATIENT ID

3.1 Preamble Recognition

After [ is added to S, a decoder tracks blinking patterns
of | to find the preamble. Figure 5 shows the preamble
state transition diagram. Here, T), denotes the period of the
previous LED state and is obtained from the elapsed time
recorded in the entry of [ € S. At first, | starts with the
initial ON state in Fig. 5. Then the state becomes OFF
when [ turns off. During the OFF state, [ is kept tracked.
Finally, when [ is turned on, decoding starts if T}, is greater
than the threshold Tpmin, which is the minimum length of
the OFF state in the preamble. Thus

Tpmin S 3/2f + Egzzn - E'rR;LCZ,I’

Note that we remove noises such as other lights through
the above process. If T), becomes greater than the threshold
Tpmaz, we regard [ as a noise and remove it from S. Likewise,
the condition that Tpmae has to satisfy is

Tomaz > 3/2f +erbn + B2

In addition, if T}, is less than threshold Tpmin in the OFF
state, we also remove [ from S because period T} of the OFF
state is too short compared with the preamble.

3.2 Decoding Data Bits

After preamble recognition, decoders recognize the state
transitions at the middle of the bit periods for decoding.
As mentioned in Sec. 2.3, we use decoding interval I which
indicates the timing when a decoder decodes the observed
transition to single data bit. When a state transition is
observed, the decoder computes the elapsed time 7. since
the last decoding. If T. exceeds I, we decode the data bit.

Figure 6 shows an example of a decoding process of data
bits 001. A decoder holds the current states of decoding for
each light. There are four states of decoding as shown in Fig.
7, that are ON/beg, OFF/beg, ON/mid, and OFF/mid.
These states represent whether an LED is turned on or off
and whether the last observed transition is the beginning or
the middle of a bit period. Note that when state transitions
to either ON/mid or OFF/mid occur, 0 or 1 is decoded and
T. is reset to 0. When a decoder captures the last f/2 state
of the preamble as shown in Fig. 6(a), the decoding state is
initialized to ON/mid without decoding. The next state is
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Figure 8: LED Used in Experiment

OFF/beg since T is less than I at the timing of Fig. 6(b).
By capturing the next transition at Fig. 6(c), the state tran-
sition to ON/mid occurs because T, exceeds I. The data bit
of 0 is decoded at the same time. In the same manner, the
following bits are decoded.

In the above decoding processes, we also eliminate noises
such as other lights with camera shake and flickers. From
the property of Manchester code, the shortest period of the
turned on/off state is /2. Therefore, T, = f/2+eL%, —efiz
is the lower bound of the turned on/off state observed by the
decoder. The threshold Tym:rn is set to a value smaller than
this lower bound. If T, < Tymin, the light is filtered as a
noise. Likewise, lights that keep turned on/off for a long
time are filtered. Threshold Tymes > f + €52, + ef2. is
used for this purpose.

4. EXPERIMENT
4.1 Settings

We have implemented the prototype of our method on
a laptop with a webcam by C++ with OpenCV. Figure 8
shows an LED used in the experiment. An LED lens is at-
tached to the LED to focus the light for long distance recog-
nition. The LED is connected to a SunSPOT and controlled
by Java running on the SunSPOT. AT91 timer counter is
used in the SunSPOT to measure the clock timing as accu-

rately as possible.

Brightness threshold Y7y was empirically set to 240. %
was 50ms in our prototype. Other thresholds were set to
values that satisfy each condition.

The experiments were conducted in a large indoor room.
A transmitter and a decoder were fixed at each position.
We measured two metrics: (i) a recognition success ratio
and (ii) an LED detection ratio. The recognition success
ratio is defined as

# of correct decoding

100(%).
# of ID transmission trials % (%)

The LED detection ratio is a metric to show the efficiency
of LED recognition regardless of the correctness of decoded
IDs and is defined as
# of wrong decoding 4+ # of correct decoding
# of ID transmission trials

% 100(%).

In the LED detection ratio, decoding with lost bits is not re-
garded as the wrong decoding. Therefore, the LED detection
ratio decreases when bit losses occur. Note that decoding
lights except the LED was not observed because thresholds
were appropriately set to eliminate noises.

4.2 Effect of Decoding Interval s

To confirm the correctness of the condition (1), we mea-
sured the recognition success ratios and the LED detection
ratios for different I. Different values of I were set so as to
satisfy the condition (1). f was set to 300ms or 500ms. ID
was transmitted 40 times for each parameter setting. The
distance between the transmitter and the decoder was 8m.

Figures 9 and 10 show the results in the cases of f =
300ms and f = 500ms, respectively. From the results, we
can see there are some ranges of I where both the recogni-
tion success ratios and the LED detection ratios are 100%.
These ranges are covered by the ranges defined by the con-
dition. Overall, the recognition success ratios increase with
the increase of I to the lower bound of the condition. How-
ever, they decrease when I exceeds the upper bound of the
condition due to bit losses. Meanwhile, the LED detection
ratios are almost 100% except when [ is larger than the up-
per bound. The reason is that bit errors often occur if I is
too short and they do not reduce the LED detection ratios.
By contrast, if I is too large, the possibility of bit losses
increases. Thus both the recognition success ratios and the
LED detection ratios decrease in those cases.

When f is 300ms, the condition is 200 > I > 250. There-
fore, the result explains the correctness of the condition be-
cause 100% recognition success ratios are observed when the
values of I are 225ms and 250ms. The LED detection ratio
is still 100% in the case of I = 200ms. However, the recog-
nition success ratio decreases to approximately 65% despite
satisfying the condition. This result indicates that some
data bits were wrongly decoded due to the short decoding
interval. This is because the total delay exceeds ef% 412 .
The above observation is the same in the case of f = 500ms
where the condition is 300 > I > 450. From the results, it
is important that we conservatively set the upper bounds of
the delay and the jitter to larger values than measured ones.

4.3 Effect of Distance and Environmental Bright-

ness

For the purpose of seeing the effect of distance, we mea-
sured the recognition success ratios at the decoder locations
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1, 8, and 15m away from the transmitter. We used the set-
ting of I = 225ms and f = 300ms for the experiment. In
addition, we conducted the experiment in two environments
where all room lights were turned on and off.

Figure 11 shows the results. When the lights are turned
off, the recognition success ratios are 100% in all cases. The
recognition success ratios in the case of the bright environ-
ment are little lower but still almost 100%. The only excep-
tion is when the distance is 1m where the recognition success
ratio is 66%. To investigate the reason, we measured the
LED detection ratio, which was 68%. This means that de-
coding succeeds as long as the LED is detected. Therefore,
we conclude that the LED is often regarded as a noise by
using noise filtering based on threshold rrx. Nevertheless,
our prototype can achieve more than 94% of the recognition
success ratios at the distance of 15m. Since f = 300ms, the
shortest and longest recognition time are approximately 3
and 6 seconds respectively. Thus the average time required
to recognize IDs is 4.5 seconds approximately. From the
results, we have confirmed our prototype achieves enough
performance for our objective.

5. CONCLUSION

In this paper, we proposed image sensor communication
for ID recognition using embedded cameras in commercial
off-the-shelf mobile devices. In the proposed method, the
electronic tags transmit their IDs by LED blinking patterns
and decoders continuously capture images to receive those
patterns. We have designed our system using Manchester
code for robustness in terms of clock drift and derived the
necessary and sufficient condition for decoding without bit
losses and errors caused by jitter and capture delays. From
the results of the experiments using our prototype, we have
confirmed the correctness of the derived condition and the
prototype can correctly recognize more than 94% of 8 bit
IDs in 4.5 seconds on average. Our future work includes
handling camera shake and autonomous adjustment of pa-
rameters to environmental brightness. We are also planning
to implement our prototype on smartphones.
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