
Clearing a crowd: Context-supported Neighbor
Positioning for People-centric Navigation

Takamasa Higuchi†, Hirozumi Yamaguchi†,‡, and Teruo Higashino†,‡

† Graduate School of Information Science and Technology, Osaka University, Japan
1-5 Yamadaoka, Suita, Osaka 565-0871 Japan

‡ Japan Science and Technology Agency, CREST
{t-higuti,h-yamagu,higashino}@ist.osaka-u.ac.jp

Abstract. This paper presents a positioning system for “people-centric”
navigation, which estimates relative positions of surrounding people to
help users to find a target person in a crowd of neighbors. Our system,
called PCN, employs pedestrian dead reckoning (PDR) and proximity
sensing with Bluetooth only using off-the-shelf mobile phones. Utiliz-
ing the feature of “group activity” where people naturally form groups
moving similarly and together in exhibitions, parties and so on, PCN cor-
rects deviation of distance and direction in PDR. The group information
is also helpful to identify the surrounding people in the navigation. A
field experiment in a real exhibition with 20 examinees carrying Google
Android phones was conducted to show its effectiveness.

1 Introduction

Let us think of a party place as shown in Fig. 1. Since the place is highly crowded
with those present, our view is often obstructed by the surrounding people as Fig.
2. Thus we can hardly find a particular person in such a crowd even if we know
that he/she is nearby. Unfortunately, there is few technology that can help us in
such situations. Infrastructure-based location systems using ultrasound, infra-
red or RF usually need a lot of embedded sensors on the walls and dedicated
receivers at clients. WiFi-based systems [3, 16] are most popular, but accuracy
is greatly affected by noise from the other APs. The related indoor positioning
methods are surveyed in Section 2. We strongly believe that such navigation
should be achieved instantly and easily without relying on special equipment.
Use of off-the-shelf devices such as smartphones is a reasonable option, but to
mitigate errors due to sensor noise and other environmental factors is a challenge.

This paper presents a positioning system called PCN (the acronym of people-
centric navigation) that estimates the relative positions of surrounding people
to help users to find a specific person in the crowd of neighbors. PCN employs
pedestrian dead reckoning (PDR) and proximity sensing with Bluetooth only us-
ing off-the-shelf mobile phones. As demonstrated in our preliminary experiment
being presented in Section 3, position errors in PDR may grow up to tens of me-
ters, which may seriously degrade the relative position accuracy. To cope with
the problem, we focus on group activity, a specific feature in crowded situations

Fig. 1. A scene of a party

　

Fig. 2. Finding a person in a crowd

like exhibitions and parties. In such situations, people often move together with
some others (i.e., “groups”). These groups may be formed by friends, families
and colleagues, or even strangers who are just moving toward the same direc-
tion. PCN dynamically detects similarity of their activities by gathering mobile
phones’ acceleration, direction and received signal strength (RSS) of Bluetooth
radios, and then corrects deviation of PDR trace by harmonizing with the traces
of other group members. The estimated group information is also helpful for
enhancing position awareness of the users, which is usually based on recognition
of groups like “three people walking ahead” and “five people standing behind”.

To quantitatively observe the performance in terms of group recognition pre-
cision and relative position accuracy, we have implemented PCN on Google An-
droid phones and conducted a field experiment with 20 examinees in a real ex-
hibition. The result of the experiment has shown that PCN could achieve group
estimation accuracy of 94.8% as well as relative position accuracy of 3.51m.
Without depending on any additional infrastructure or dedicated devices, PCN
has reduced the position error by 31% compared to a conventional approach.

2 Related Work and Contribution

A number of methods have been investigated to estimate location of mobile
nodes. Active Bat [8] is an well-known method that employs TDoA (time differ-
ence of arrival) of ultrasound and radio signals to measure the distance between
clients and multiple anchors. Taking the advantage of accurate range measure-
ment by TDoA, positioning errors are usually within a few centimeters if the
anchors are deployed with a few meters spacing. However, the cost for instal-
lation and maintenance of such anchors is not negligible. We have proposed
a cooperative localization method called “stop-and-go localization” [9] for mo-
bile nodes with TDoA ranging devices, which achieves accurate positioning with
much less dependence on infrastructure. However, accurate distance measure-
ment between commercial mobile devices is still a challenge. Although there are
some techniques like BeepBeep [12] that achieves accurate ranging between mo-
bile phones using propagation delay of sound signals, additional effort such as
device-dependent tuning and background sound noise elimination is necessary
and thus more instant and simpler positioning is preferable. For more cost-
efficient positioning, Virtual Compass [1] employs wireless ad hoc communica-

tion via Wi-Fi and Bluetooth to estimate relative distance between mobile nodes
based on RSS. However, RSS-based ranging often incurs large error due to mul-
tipath or other signal propagation effects.

Pedestrian dead reckoning [13, 15] that estimates the trace of pedestrians
using accelerometers, digital compasses and gyro sensors has been investigated so
far. While most previous PDR methods have assumed dedicated sensor devices
attached to human bodies, some methods such as CompAcc [6] have utilized
commercial mobile phones. However, due to noise from the sensors, PDR cannot
stand alone as demonstrated in the next section.

Utilizing proximity information is a cost effective way to refine the accuracy
of estimated traces obtained by PDR or some other ways. We have presented an
encounter-based trace estimation method in [7]. NearMe [11] detects proximity
of mobile phones by comparing the list of detected Wi-Fi APs and their RSS.
Escort [5] combines PDR with proximity sensing via sound beaconing to estimate
relative positions, assuming such services that guide users to their friends in
unknown places. Our approach is similar with Escort in the sense that we also
use PDR and proximity information. However, both of our goal and approach
are totally different from Escort since we pursue the estimation accuracy of
neighbors’ relative positions to identify the friends nearby, while Escort aims at
guiding users to friends not in the surrounding crowd but in some unknown or
unfamiliar places. Escort relies on image recognition to finally find friends in a
crowd, which may incur additional effort by users. Similarly, [10] enhances the
quality of PDR by detecting proximity information based on Bluetooth RSS,
but the accuracy would still not be enough for such mobile social navigation.

Based on the discussion above, our contribution is two-fold. Firstly, we present
a novel positioning method to identify nearby friends in a crowd only using off-
the-shelf mobile phones. To the best of our knowledge, this is the first approach
that copes with this challenge. Considering the feature of people’s behavior in
exhibitions, parties and so on, we have come up with the idea of detecting “group
activity” from sensor readings and Bluetooth of mobile phones and utilizing it
to correct relative position errors. Secondly, we have implemented our system on
Google Android phones, and have conducted experiments in a real exhibition.
Through this experiment, we could show the effectiveness of our approach in the
real world.

3 Preliminary Experiments and Basic Idea

The overview of PCN system is shown in Fig. 3. Clients of PCN (i.e., mobile
phones) continuously obtain accelerometer and digital compass readings to esti-
mate step counts and direction. They also estimate a vector of each step called
step vector, using the direction information and stride length. Since the stride
length varies between individuals, it is approximated from the body height. The
clients also record RSS from the neighboring clients, which is collected through
device discovery process of Bluetooth. The step vectors and RSS are transferred
to a centralized server called PCN server via 3G or Wi-Fi, and the collected RSS

estimated trace via PDR

group estimation

clients in different groups

are spacially separated

proximity sensing

clients in the same

group are clustered

group-based

error correction

Fig. 3. PCN system overview

is transformed into distance based on a predefined RSS-to-distance function at
server side. Then the PCN server estimates relative positions among users and
the results are sent back to the clients to tell the estimated situation.

3.1 Effect of Noise on Proximity and Trace Estimation

As we have stated in the previous sections, step vectors and RSS-based dis-
tance contain non-negligible errors. Fig. 4 shows Bluetooth RSS-distance map-
ping based on a real measurement using two Google Android phones (Samsung
Nexus S) in our department building receiving a lot of interference from Wi-Fi.
We have plotted the measured RSS at each distance (outliers have been elimi-
nated), and indicated their maximum and average values, where error bars show
the standard deviations from the average. As shown in previous literature such
as [4], we can see that different RSS values were observed at the same distance
due to multipath effect, interference and so on. However, we focus on a cri-
terion to characterize this relation based on the maximum RSS values; at 7m
or longer distances they never reach −70dBm, while they exceed it at 6m or
shorter distances. We utilize this characteristic to detect “proximity” explained
later, allowing some inaccuracy around the boundary of two categories.

We have also implemented a simple PDR application on the Android phones
to examine the accuracy of step vectors. This application continuously monitors
acceleration in the vertical direction to detect steps and the compass readings to
estimate the orientation of mobile phones. As shown in Fig. 5, the acceleration in
the vertical direction changes synchronously with the user’s steps. Therefore we
simply count up the number of steps when the acceleration exceeds a threshold
where the counting interval is set to 300 milliseconds to prevent double counting.
Using this application, we have analyzed the estimated trace of a user walking
twice on the boundary of a 5m×10m rectangle region (Fig. 6). On the estimated
trace, the true positions of the three different points highlighted by dotted circles
are actually the same, and thus we can observe that the position errors grew up
to 10.32m after 60m walking. We note that this is the simplest threshold-based
PDR where mobile phones are assumed to be held vertically at hands. There
are of course more enhanced methods such as [13], and those methods can be
used to improve PDR accuracy in PCN since it just uses trace estimation results
from PDR. For simplicity of discussion, we assume this simple PDR hereafter.

0 2 4 6 8 10 12 14 16
distance [m]

−90

−80

−70

−60

−50

−40

re
ce

iv
ed

 s
ig

na
l s

tre
ng

th
 [d

B
m

] maximum
measured
average

Fig. 4. Distance vs. Bluetooth RSS

0 500 1000 1500 2000 2500 3000 3500 4000 4500
time [msec]

4

6

8

10

12

14

16

ac
ce

le
ra

tio
n

(z
-a

xi
s)

 [m
/s

2
]

Fig. 5. Acceleration in vertical direction

true trace

0

-4

2

4

-2

estimated trace

5 10 15

error = 10.32m

Fig. 6. Trace deviation in PDR Fig. 7. Prototype of PCN client

3.2 Preliminary Experiment for Context-Supported Positioning

In order to calibrate PDR traces, we focus on general observation of human be-
havior; in crowded regions, the behavior can be categorized into several patterns.
For example, in a party, most people stand and talk with each other. They often
move around together to join the other groups or to find drinks and foods. To
examine similarity of traces in a group, we have conducted the following exper-
iment using the PDR application. We let 15 examinees with Nexus S phones
freely form groups and let them walk for 30 minutes in a 10m×10m field where
markers were placed with one meter spacing. The examinees also took videos
of markers to record true traces as shown in Fig. 8. The obtained traces were
broken down into subtraces of 2 sec., and the average direction of each group was
derived at each time. Then directions of the subtraces were compared to each
group average to examine the deviation of orientation within and without the
group. Fig. 9 shows the cumulative distribution of directional deviation from the
group average. The deviation was 30 degrees or less for about 80% of subtraces
in the same group, while it distributed uniformly for those in different groups.

Assuming that users in the same group have similarity of traces, PCN cor-
rects the estimated traces that are deviated from the “group traces”. Since the
group information is estimated from the collected acceleration, direction and
Bluetooth RSS, we do not need any additional information for the error correc-
tion. We define two criteria to recognize groups; nodes (mobile phones) currently
in the same group (i) have been close to each other, and (ii) have moved simi-

Fig. 8. Preliminary experiment

30 60 90 120 150 180
diference of orientation [degrees]

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

di
st

rib
ut

io
n

nodes in the same group
nodes in a different group

Fig. 9. Deviation of moving directions

larly for some duration. Properties (i) and (ii) are called proximity and trace
similarity, respectively. Based on these properties, group likelihood is calculated
and the most likely grouping is adopted.

The estimation process of PCN is as follows. When the current traces are
reported from the clients to the PCN server, deviated directions and positions are
calibrated based on the trace similarity and proximity properties, respectively.
For this purpose, groups are estimated using the past acceleration, direction and
Bluetooth RSS information. After that, the Bluetooth RSS values are utilized
to reflect the relative distance among the nodes.

Fig. 7 shows a screenshot from our PCN client on the Android platform. If
group estimation is correct, the user can identify the target person in the group
of three people behind the group of three people in front of him/her. This context
information helps to mitigate the bad effect of position errors in recognizing the
target person.

4 System Design

Let S denote the set of PCN clients. PCN server estimates relative positions of
these clients using Bluetooth RSS and user traces reported by each client Ai ∈ S.
Estimated trace via PDR is obtained as a sequence of 2-dimensional step vectors
sk, each of which represents the displacement by a step. For every τ sec., we
define a movement vector of each Ai by the total displacement over the last τ
sec. We denote the movement vector of Ai at time t by ui,t in the algorithm
descriptions below. As well, we let rij,t denote measured RSS between Ai and
Aj ∈ S at time t.

4.1 Proximity Sensing via Bluetooth Scans

First, we describe the design of proximity sensing. As mentioned above, PCN
clients collect Bluetooth RSS from nearby clients via device discovery process, or
Bluetooth scan. Since Bluetooth does not have explicit broadcast mechanism, it
is the only way to instantly collect peer-to-peer RSS without link management.

Ordinary Android phones basically take more than 10 sec. for each attempt
of Bluetooth scans, which imposes a severe limitation on the frequency of the

scan attempts. To make matters worse, while the process of a scan, nodes hardly
respond to the inquiries from other neighbors because they quickly change their
radio frequency meanwhile. Consequently, nodes often miss nearby nodes if they
just repeat Bluetooth scans.

Although the scan mechanism of Bluetooth is designed to robustly detect all
the devices in the radio range, nearby nodes are relatively free from influence
of unexpected signal attenuation, and usually respond more quickly to the in-
quiries. In proximity sensing, quickly detecting the neighbors in close proximity
is more important than ensuring exhaustive detection. For that reason, we de-
cided to interrupt each Bluetooth scan in 5 sec. from the beginning. As a result
of preliminary experiment, we confirmed that the success rate of scans between
nearby nodes within 5m is degraded by only about 10% by such interruption.
In addition, we randomly determine the timing of scans to avoid misdetection
caused by simultaneous scan attempts. At each time, nodes start scanning with
probability of pscan, or otherwise they sleep for a designated backoff time. In our
implementation, we set pscan to 0.5 and randomly pick out backoff time from 2.5
sec. to 7.5 sec. Thus, we achieve reasonable performance in proximity sensing
only using Bluetooth.

4.2 Extracting Group Activities

PCN extracts group activities using recent user trails and measured RSS. These
data are periodically reported by each client and maintained in the form of fixed
length sequences. For each client Ai and time t, let Rij(t) = {rij,t, rij,t−τ , . . . ,
rij,t−(N−1)τ} be the sequence consisting of the last N samplings of RSS from
Aj , and Ui(t) = {ui,t, ui,t−τ , . . . , ui,t−(N−1)τ} be the sequence of its recent N
movement vectors. In this paper, we set the unit time τ to 2.0 sec. and the
window size N to 30, respectively.

We characterize similarity of activity (i.e., group) by two measures; (i) prox-
imity and (ii) trace-similarity. In proximity property, people in the same
group are assumed to be continuously close to each other. For each pair Ai, Aj ∈
S of clients, we quantify this feature by the number of recent Bluetooth scans
with RSS that exceeds a threshold Θprox:

nij(t) = |{rij,t′ |rij,t′ ∈ Rij(t), rij,t′ > Θprox}| (1)

where Θprox is given as a system parameter. In trace-similarity property, the
clients in the same group are assumed to have traces that are spatiotemporally
similar to each other. To quantify this feature, we extend edit distance on real
sequences (EDR)[2], a similarity measure for trajectories which was originally
designed for similarity-based retrieval on a trajectory database. For each pair
Ai, Aj ∈ S of clients, we define the edit distance between sequences of their
recent movement vectors. In general, edit distance between two sequences A and
B is defined by the number of insert, delete, and replace operations that are
needed to convert A into B. We regard corresponding movement vectors u and
v to be matched if they satisfy the both of following criteria:

| ||u|| − ||v|| | < Θl, | arg(u) − arg(v)| < Θθ (2)

where Θl and Θθ are matching thresholds. Note that we skip the angular criteria
if u = 0 or v = 0 since we cannot define orientation of the vector in such cases.
Let U and V be the sequences of movement vectors, where the length of each
sequence is n and m, respectively. We define the edit distance between U and V
by the following recursive formula:

ED(U, V) =

8

>

>

>

>

<

>

>

>

>

:

n · w if m = 0
m · w if n = 0
min{ED(Rest(U), Rest(V)) + c,

ED(Rest(U), V) + w,
ED(U, Rest(V)) + w} otherwise

(3)

where Rest(U) represents a sub-sequence of U without the first element. c is a
cost function of a replace operation where c = 0 if the first element of U and
that of V satisfy the matching criteria, and c = 1 otherwise. Insert and delete
operations correspond to temporal shifting on user traces. We let w denote the
cost of such a shifting operation, and set it to 0.5. There could be a small
difference in timing of movements even if Ai and Aj belong to the same group.
We intend to mitigate the impact of such temporal variations by imposing a
smaller cost value to insert and delete operations.

We define the edit distance dij(t) between the sequences of recent movement
vectors for each client pair Ai and Aj , say Ui(t) and Uj(t), as follows:

dij(t) = ED(Ui(t), Uj(t)) (4)

For short, we denote nij(t) and dij(t) by just nij and dij in the following
descriptions. In PCN, clients that satisfy both proximity and trace-similarity
each other are regarded as a group. We represent the group relationship between
clients Ai and Aj by binary random variable Gij , where Gij = 1 if they belong
to the same group and Gij = 0 otherwise.

Probability distribution of Gij under given measurements of nij and dij can
be derived by the well-known Bayes’ rule:

P (Gij |nij , dij) =
P (nij , dij |Gij) · P (Gij)∑1

Gij=0 P (nij , dij |Gij) · P (Gij)
(5)

For simplicity, we assume that nij and dij are independent under given Gij :

P (nij , dij |Gij) = P (nij |Gij) · P (dij |Gij) (6)

Here we also assume that there is no prior information about group relationship
between Ai and Aj , that is, P (Gij = 0) = P (Gij = 1) = 0.5. Under these
assumptions, Eq.(5) can be simplified as:

P (Gij |nij , dij) =
P (nij |Gij) · P (dij |Gij)∑1

Gij=0 P (nij |Gij) · P (dij |Gij)
. (7)

Distributions P (nij |Gij) and P (dij |Gij) in Eq. (7) can be obtained by a prior
learning, which will be discussed in Section 5.1. To classify clients Ai ∈ S (i =

1, 2, . . . , n) into activity groups, for each pair of Ai, Aj ∈ S, we first calculate the
probability that they belong to the same group based on nij and dij . Hereafter
let us call the probability P (Gij = 1|nij , dij) group likelihood.

Next, we construct a “grouping graph” as follows. Each client corresponds
to a vertex of the graph, and we add an edge between Ai and Aj ∈ S if and only
if group likelihood P (Gij = 1|nij , dij) > Θgroup, where Θgroup is a threshold. In
this paper, we set Θgroup to 0.5. Finally we regard each connected component
on the grouping graph as an activity group.

4.3 Context-supported Relative Positioning

In this section, we describe the detailed design of our context-supported rela-
tive positioning. The estimation is completed through two phases; In the former
phase, we correct user traces based on the trace-similarity of activity groups.
Bending the trace within the limits of expected PDR error, we alleviate the im-
pact of sensor noise. In the latter phase, we determine the positional relationship
of user traces based on RSS with the help of proximity of activity groups. It is
also effective to reduce position error, as well as to enhance the “perceptibility”
of the resulting estimated positions.

Modeling PDR Error To correct user trace, PCN first estimates the expected
error in the movement vectors. Assuming that PDR on client Ai has detected
m steps during the last τ sec., the movement vector ui,t can be denoted by
ui,t =

∑m
k=1 sk, where sk is the step vector by the k-th step. PDR error is mainly

caused by i) error of step length estimation, ii) error of direction estimation, and
iii) misdetection of user steps. Errors caused by i) and ii) occur in every step
sk, and accumulated in the movement vector. Expected error of step sk can be
denoted as ek = elk + eθk

, where elk is the error of estimated step length, say l,
and eθk

is the error caused by directional distortion (Fig. 10(a)). We assume that
elk is in the same direction as sk and its length follows Gaussian distribution
N (0, σ2

l). For eθk
, we assume that direction estimation error ∆θ follows Gaussian

distribution N (0, σ2
θ), and approximate eθk

by a vector which is orthogonal to
sk with a length of l∆θ. Under this modeling, we can uniquely determine the
error distribution of each step sk. We empirically set the model parameter σl

and σθ to 0.5m and 30.0 degrees, respectively.
The error caused by iii) occurs regardless of the number of detected steps in

the last τ sec. We denote this basic error by e0 and model it as follows:

P (e0) = N (0, σ2
0I) (8)

where I is a 2-dimensional unit matrix. We empirically set σ0 to 1.0m.

Correcting User Traces Using the constructed step-level error prediction
model, we estimate the probability distribution of a movement vector as follows.
As mentioned above, PDR error is accumulated in the movement vector step-
by-step as shown in Fig. 10 (b). Let u′

k be a partial movement vector composed

expected error

(a) (b)

expected variance

Fig. 10. Correcting user traces: (a) step-level error prediction model of PDR, (b) cor-
recting a movement vector ut according to the average vector ut of the group.

of s1, s2, . . . , sk. We recursively predict the distribution of ui,t by sequentially
deriving the distributions of u′

k (k = 0, 1, 2, . . . ,m), namely P (u′
k|s1:k). Since

the error caused by misdetection of user steps could occur regardless of the users’
movement, we apply the distribution in Eq. (8) as an initial distribution:

P (u′
0) = P (e0). (9)

Given the distribution at the (k−1)-th step (i.e., P (u′
k−1|s1:k−1)), we can derive

the distribution at the next step using the step-level error prediction model.
Relationship between u′

k−1 and u′
k can be represented as follows:

u′
k = u′

k−1 + sk + ek (10)

where ek is the error vector included in sk. According to the recursion formula,
the updated distribution P (u′

k|s1:k) can be derived from the previous distribu-
tion P (u′

k−1|s1:k−1) and step-level error distribution P (ek|sk):

P (u′
k|s1:k) =

∫ {∫
P (u′

k|sk,ek, u′
k−1) · P (u′

k−1|s1:k−1)du′
k−1

}
· P (ek|sk)dek

(11)
Here, we sample Np particles u′(j)

k−1 (j = 1, 2, . . . , Np) from the previous distri-
bution P (u′

k−1|s1:k−1) to represent it by Monte Carlo Approximation:

P (u′
k−1|s1:k−1) '

1
Np

Np∑
j=1

δ(u′
k−1 − u′(j)

k−1) (12)

By this particle-based representation, the updated distribution in Eq. (11) can
be transformed into:

P (u′
k|s1:k) =

1
Np

Np∑
j=1

[∫
P (u′

k|sk, ek,u′(j)
k−1) · P (ek|sk)dek

]
. (13)

For each particle u′(j)
k−1, we sample a single particle e

(j)
k from the step-level error

distribution P (ek|sk) to approximate it as follows:

P (ek|sk) ' δ(ek − e
(j)
k) (14)

Note that we sample an error value for each of Np particles to reasonably approx-
imate the step-level error distribution P (ek|sk) overall. By this approximation,
Eq. (13) can be transformed into:

P (u′
k|s1:k) ' 1

Np

Np∑
j=1

[∫
P (u′

k|sk,ek, u′(j)
k−1) · δ(ek − e

(j)
k)dek

]

=
1

Np

Np∑
j=1

[
δ
(
uk − (u′(j)

k−1 + sk + e
(j)
k)

)]
(15)

Based on the discussion above, we design the error prediction algorithm as
follows. First, we sample Np particles u′(j)

0 (j = 1, 2, . . . , Np) from P (u′
0) in Eq.

(9). Then, for each step sk, we add sk and e
(j)
k , which is an error value sampled

from P (ek|sk), to each particle u′(j)
k . After repeating this operation for all the

steps sk in the period of recent τ sec., we can obtain the probability distribution
P (ui,t) of the movement vector in the form of Monte Carlo representation as
P (ui,t) = P (u′

m|s1:m). We set Np to 500 in our experiment in Section 5.
Assuming the trace-similarity in an activity group, we correct the current

movement vector to make it approach the average movement vector of the
group it belongs to. We achieve reasonable correction by harmonizing the pre-
dicted error distribution of PDR and expected distribution given by the as-
sumption of trace-similarity among people in the same activity group. Let ut

be the average movement vector of group G, which Ai of interest belongs to;
ut = 1

|G|
∑

Aj∈G uj,t. The distribution of expected movement vector is modeled
based on the preliminary experiment described in Section 3. For each movement
vector ui,t and its corresponding group average ut, we compare the length and
direction of ui,t and ut. To model the distribution, we assume that the ratio of

max
(

||ui,t||
||ut|| , ||ut||

||ui,t||

)
follows a one-sided Gaussian distribution N (1.0, σ2

gl
) and

(arg(ui,t)− arg(ut)) follows N (0.0, σ2
gθ

). Based on the result of our preliminary
experiment, we set the parameters σgl

and σgθ
to be 0.50 and 30.0 degrees, re-

spectively. Since we found that the distribution of (||ui,t|| − ||ut||) varies with
the moving speed of users, here we employ the ratio of the norms, which is more
robust against the users’ movement, in modeling trace-similarity. By multiply-
ing these two distributions, the distribution of expected movement vector under
given group average ut can be derived. Weighting each particle u′(j)

k with the
prior distribution P (ui,t|ut), we calculate the expected value of ui,t, which is to
be the corrected movement vector ũi,t:

ũi,t =
Np∑
j=1

u
(j)
i,t ·

P (u(j)
i,t |ut)∑Np

k=1 P (u(k)
i,t |ut)

. (16)

If either ||ui,t|| or ||ut|| is zero, we replace it by a sufficiently small value
(<< 1) to approximate the corresponding weight. What we essentially do in
Eq. (16) is to multiply two different distributions of ui,t together, normalize the

product so that it becomes a valid PDF, and compute the mean of the new PDF
to derive the corrected movement vector.

Determining Relative Positions PCN determines relative positions of the
clients based on the corrected movement vectors and measured RSS. If some
external positioning infrastructure such as Wi-Fi APs is available, we can start
the estimation from those approximate user positions; if not, we initially place
each client on a virtual coordinate system at random. Then, at every τ sec.,
we update and refine these positions using the corrected movement vectors and
measured RSS. For each client Ai, we first independently update its position by
adding the corrected movement vector ũi,t to its previous position pi,t−1. We
use the resulting position p

(0)
i,t as an initial estimation of Ai’s position at time t,

and adjust it based on peer-to-peer RSS by the following iterative algorithm.
At each iteration k, we put virtual attracting force f

(k)
ij,t between all the client

pairs Ai, Aj which have observed RSS of more than Θprox during the last τ sec.:

f
(k)
ij,t =

8

>

<

>

:

κ · max
“

0, ||p(k−1)
j,t − p

(k−1)
i,t || − dp

”

·
p

(k−1)
j,t − p

(k−1)
i,t

||p(k−1)
j,t − p

(k−1)
i,t ||

if rij,t > Θprox

0 otherwise
(17)

where p
(k−1)
i,t and p

(k−1)
j,t are the estimated positions of Ai and Aj in the virtual

coordinate system at the previous iteration k−1, and κ is an algorithm parameter
that characterizes the strength of the force. dp is the maximum range where RSS
of more than Θprox can be observed (dp = 6.0m in our preliminary experiment).

As discussed in Section 3, the large deviation of measured RSS imposes a
limitation to proximity sensing; basically the only information we can obtain
from the measured RSS is whether the distance between the nodes are within
dp. To pursue finer-grained positioning, we inspire some heuristics to the position
estimation utilizing the assumption of proximity among members of an activity
group. For client pairs in the same group, we replace dp by d′p (d′

p < dp), where
d′

p is also the possible range for the measured RSS. It leads estimated positions
of the nodes in the same group to be closer, which is expected to enhance the
positioning accuracy in most situations. We set d′p to 3.0m in this paper.

In psychological science, it is said that human perceives objects in close prox-
imity as a group[14]. Based on this observation, we slightly adjust the node posi-
tions to spatially separate each group. This could help users intuitively identify
the estimated positions with actual surrounding people. We put this heuristics
to the position estimation by adding weak force f ′(k)

ij,t between each client pairs:

f ′(k)
ij,t =

8

>

>

>

>

<

>

>

>

>

:

κ′ · max
“

0, ||p(k−1)
j,t − p

(k−1)
i,t || − dp′

”

·
p

(k−1)
j,t − p

(k−1)
i,t

||p(k−1)
j,t − p

(k−1)
i,t ||

if Gij = 1

−κ′ · max
“

0, dp′ − ||p(k−1)
j,t − p

(k−1)
i,t ||

”

·
p

(k−1)
j,t − p

(k−1)
i,t

||p(k−1)
j,t − p

(k−1)
i,t ||

otherwise

(18)

where κ′ (κ′ << κ) is a constant given as an algorithm parameter. Thus, we
separate each group by adding attracting force between the pairs in the same
group, whereas putting repulsive force to the pairs in different groups. Note that
we choose κ′ to be much smaller than κ to make the measurement-based attract-
ing force f ′(k)

ij,t takes priority in determining the estimated positions, intending
to maintain the consistency with RSS measurements.

Under the assumptions above, we update the “velocity” v
(k)
i of each node Ai

according to the resultant force affecting to Ai:

v
(k)
i = α

v
(k−1)
i +

∑
Aj∈S\{Ai}

(
f

(k)
ij,t + f ′(k)

ij,t

) (19)

where α is a dumping coefficient, which is given as an algorithm parameter. Note
that v

(0)
i = (0, 0) for each client. Then we adjust the position of each client Ai

depending on its velocity:

p
(k)
i,t = p

(k−1)
i,t + v

(k)
i . (20)

We repeat the operations above until the number of iteration k reaches the
termination criterion kterm or total amount of velocity ||

∑
Ai∈S v

(k)
i || converges

to less than vterm to determine estimated positions pi,t at time t.

5 Evaluation

To collect sensor data and RSS logs in real environment, we conducted a field
experiment in a public trade fair. As a part of a technical event named Knowledge
Capital Trial 2011 (http://www.kmo-jp.com/en/), the trade fair was held at a
27m×40m-sized hall as shown in Fig. 11. Totally 16 industrial companies and
universities exhibited their state-of-the-art technology while thousands of visitors
went around the booths.

We let 20 students hold Nexus S phones and asked to go around the event
place with a group of four people. A sensing application equipped with PDR
and proximity sensing was running on each phone to record users’ traces and
RSS logs. Each group entered the place at the entrance, and then looked around
6-12 booths for about 30 minutes. After that, they left there through the exit
shown in Fig.11. Usually they stayed at each booth for 1-5 minutes on average.
To collect ground truth data of user traces, we assigned an additional person to
each group to plot their true positions on a field map with time stamps, as well as
taking their photos at certain time intervals. After conducting such experiment
three times, we collected real sensor data and RSS logs which are about 1,800
minutes long in total (90min. logs for 20 examinees). In the following evaluation,
we used logs of 2 experiments as a learning dataset to construct group classifier,
and the remaining one as a test dataset to examine the performance.

(1)

(2)

(3)

(4)

(5)
(6)

(7)

(8)

(9)
(10)

(11)

(12)

(16)

(15)

(14)

(13) Exit

(End Point)

Entrance

(Start Point)

40m

27m

Fig. 11. Floor map Fig. 12. Field experiment

0 5 10 15 20 25 30
nij

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

di
st

rib
ut

io
n

of
 P
(n

ij
|G

ij
)

P(nij|Gij=1)

P(nij|Gij=0)

Fig. 13. Distribution of nij

200 400 600 800 1000 1200 1400 1600
time [sec.]

0.0

0.2

0.4

0.6

0.8

1.0

gr
ou

p
lik

el
ih

oo
d
P
(G

ij
=
1
|n

ij
) Gij=1

Gij=0

Fig. 14. Group likelihood (proximity)

5.1 Constructing Group Classifier

At first, we modeled proximity and trace-similarity of activity groups based on
the learning dataset, and synthesized those models to construct a group classifier.

Proximity Model: Analyzing the learning dataset, we calculated the distri-
bution of nij , which has been introduced as a proximity measure between two
clients in Eq. (1). Fig. 13 shows the distribution in two different cases: one is for
the pairs in the same group (Gij = 1) and another is for ones in the different
groups (Gij = 0). As shown in the resulting distribution, nij ≤ 1 in more than
90% cases for the pairs in different groups, while nij ≥ 2 for as much as 95% for
the same group cases. Thus, we can accurately distinguish whether or not a pair
of clients belongs to the same group by observing the recent RSS measurements.

To examine the classification capability of the proximity feature, we tried
constructing a group classifier only using the proximity model. We picked out
RSS logs of three clients, say Ai, Aj , and Aj′ from the test dataset, where Ai

and Aj belong to the same group while Aj′ is not. After applying the proximity-
based group classifier to the pairs (Ai, Aj) and (Ai, Aj′), we obtained a series of
group likelihood. The result is shown in Fig. 14. For the pair (Ai, Aj), the group
likelihood is successfully around 1 throughout the experiment. As for (Ai, Aj′),
the likelihood is less than 0.1 almost throughout the experiment. A problem is
that the group likelihood of (Ai, Aj′) rises around t = 1, 100 sec. and t = 1, 500
sec. This is because these two groups were going around nearby booths at that
time. The trace-similarity model, which will be discussed in the next section,
helps to distinguish such nearby groups.

0 5 10 15 20 25 30
dij

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

di
st

rib
ut

io
n

of
 P
(d

ij
|G

ij
)

P(dij|Gij=1)

P(dij|Gij=0)

Fig. 15. Distribution of edit distance

200 400 600 800 1000 1200 1400 1600
time [sec.]

0.0

0.2

0.4

0.6

0.8

1.0

gr
ou

p
lik

el
ih

oo
d
P
(G

ij
=
1
|d i

j)

Gij=1

Gij=0

Fig. 16. Group likelihood (edit distance)

200 400 600 800 1000 1200 1400 1600
time [sec.]

0.0

0.2

0.4

0.6

0.8

1.0

gr
ou

p
lik

el
ih

oo
d
P
(G

ij
=
1
|n

ij
,d

ij
) Gij=1

Gij=0

Fig. 17. Group likelihood (synthesized)

200 400 600 800 1000 1200 1400 1600
time [sec.]

0.0

0.2

0.4

0.6

0.8

1.0

gr
ou

pi
ng

 a
cc

ur
ac

y

Fig. 18. Accuracy of group estimation

Trace-similarity Model: We calculated the distribution of dij , which has been
defined as a trace-similarity measure in Eq. (4). The resulting distribution is
shown in Fig. 15. Since we conducted this experiment in an exhibition, users
spent much time staying at each booth. This leads the distribution of dij to
be biased to zero. However, the probability that dij ≥ 5 is around 40% for the
clients in the same group while the corresponding probability for the different
group cases is no more than 10%. This difference takes an important role in
distinguishing nearby activity groups.

We also tried constructing a group classifier only using the trace-similarity
model, and then applied the resulting classifier to the traces of pairs (Ai, Aj) and
(Ai, Aj′), which correspond to the previous section. As a result, we obtained a
series of group likelihood shown in Fig. 16. When the two clients are both staying
at a booth, the group likelihood is relatively high regardless of whether they are
in the same group or not. On the other hand, while the nodes travel between the
booths, the likelihood in different group cases falls to around zero. The latter
feature contributes to separation of nearby groups, as we mentioned above.
Group Classifier: Finally, we synthesize these two models using the Bayes’
rule in Eq. (7) to construct a complete group classifier. Fig. 17 shows the group
likelihood for pairs (Ai, Aj) and (Ai, Aj′) based on the resulting group classi-
fier. Recalling the proximity-based group likelihood in Fig. 14, the likelihood of
(Ai, Aj′) unsuccessfully rises when their groups are nearby. In Fig. 17, a failure
around t = 1, 100 sec. is mitigated since the large trace dissimilarity suppressed
the group likelihood. Thus, the proximity and trace-similarity models comple-
ment each other to achieve better grouping accuracy. Note that if the nearby

groups take similar behavior, these groups are regarded as the same group as
t = 1, 500 sec. in Fig. 17. Although this is a wrong estimation, we believe that
it rarely affects the performance of PCN since users would also perceive such
people as if they were in the same group.

5.2 Results

We evaluated the performance of PCN from three aspects, namely, grouping
accuracy, relative positioning error, and perceptibility of the estimated positions.

Grouping Accuracy: Appropriate group classification is a key to enhance po-
sitioning performance with our context-supported correction mechanism. We ap-
plied the group classifier to all the sensor data and RSS logs in the test dataset
to classify those 20 clients into activity groups. Then we evaluated the grouping
accuracy by the accuracy rate of pairwise membership test: for each pair of nodes,
we checked whether they are in the same group or not, and compared them with
the actual grouping (5 groups of 4 people). As shown in the temporal change
of resulting grouping accuracy in Fig. 18, we successfully achieved accuracy ra-
tio of more than 90% over most pieces of time in the experiment, with average
grouping accuracy of 94.8% (1.7% false positives and 3.5% false negatives). On
the other hand, we can also see that the grouping accuracy temporarily drops
around t = 1, 400 sec. As discussed in Section 5.1, this is because several groups
were staying at nearby booths, which leads the group classifier to misinterpret
them as a single group. Although expanding the window size N to consider older
histories of proximity and trace-similarity is a possible way to distinguish such
groups, we should carefully select the parameter since larger N could make it
hard to detect time variation of groups (i.e., joining and leaving) immediately.

Relative Positioning Error: To evaluate the efficacy of our context-supported
error correction mechanism, we evaluated relative positioning error to nearby
nodes which are within 10m from each node Ai of interest. We represent the
set of such nearby nodes at time t as Si(t) ⊆ S and define the average relative
position error denoted by err(t) as follows:

err(t) =
1
|S|

∑
Ai∈S

 1
|Si(t)|

∑
Aj∈Si(t)

||pji,t − p̃ji,t||

 (21)

where pji,t and p̃ji,t represent the true and estimated positions of Aj at time t
from a local view of Ai, respectively.

We applied our context-supported relative positioning algorithm to the test
dataset, and evaluated the relative position error every 2 sec. In Fig. 19, we com-
pared the position error with a straightforward method which performs relative
positioning using RSS and plain user traces without group-based correction. As
a benefit of the context-supported correction mechanism, our method achieved
higher positioning accuracy over most pieces of time through the experiment.
The average positioning error of our method was 3.51m, which corresponds to
improvement of 31.3% compared to the plain approach.

200 400 600 800 1000 1200 1400 1600
time [sec.]

0

2

4

6

8

10

12

re
la

tiv
e

po
si

tio
n

er
ro

r [
m

]

with grouping (proposed)
without grouping

Fig. 19. Relative position error

200 400 600 800 1000 1200 1400 1600
time [sec.]

0.0

0.2

0.4

0.6

0.8

1.0

gr
ou

p
m

is
m

at
ch

 ra
tio

with grouping (proposed)
without grouping

Fig. 20. Mismatch ratio between geomet-
rical clusters and activity groups

Perceptibility of the Estimated Positions: Finally, we evaluated our system
from a viewpoint of “perceptibility”, which is also an important feature in PCN.
As mentioned in Section 4.3, human intuitively perceives objects in close proxim-
ity as a group[14]. Based on this observation, we applied a clustering algorithm
to the estimated positions to find geometrical clusters which would be regarded
as a group in human perception. Comparing such geometrical clusters to actual
activity groups, we evaluated the perceptibility of the estimated positions.

For geometrical clustering, we used a hierarchical clustering algorithm with
the group-average method. It defines inter-cluster distance between two clusters
C1 and C2 by the following formula:

d(C1, C2) =
1

|C1||C2|
∑

p∈C1

∑
q∈C2

d(p, q) (22)

where d(p, q) is the Euclid distance between estimated positions p and q of two
clients, and |C1| and |C2| represent the size of C1 and C2, respectively. We start
the clustering from |S| clusters each of which contains a different client in S.
Calculating the inter-cluster distance for all the pairs of clients, we pick out a
pair with the shortest distance to merge them to a single cluster. We repeat this
bottom-up clustering process until the shortest distance falls to a threshold. We
set this threshold to 1.5m in the evaluations below.

We evaluated the consistency between the resulting geometrical clusters and
actual activity groups by failure ratio of pairwise membership test. Fig. 20 shows
the result compared to the straightforward method without group-based correc-
tion. For the compared method, errors in estimated traces make the positional
relationship between the clients go wrong, which leads average mismatching ra-
tio to be 14.3%. In contrast, our method suppressed such failures to 5.1% owing
to the group-based correction. This corresponds to the improvement of 64% and
even be close to the average failure ratio for true positions of 3.9%.

6 Conclusions

In this paper, we proposed a novel social navigation framework, called PCN,
that leads users to their friends in a crowd of neighbors. PCN provides relative

positions of surrounding people based on sensor readings and Bluetooth RSS,
both of which can be easily obtained via off-the-shelf mobile phones. Through
a field experiment in a real trade fair, we demonstrated that PCN improves
positioning accuracy by 31% compared to a conventional approach owing to its
context-supported error correction mechanism. Furthermore, we showed that the
geometrical clusters in the estimated positions are highly consistent with actual
activity groups, which would help users to easily identify actual nearby people.

References

1. Banerjee, N., Agarwal, S., Bahl, P., Chandra, R., Wolman, A., Corner, M.: Vir-
tual compass: relative positioning to sense mobile social interactions. In: Proc. of
Pervasive 2010. pp. 1–21 (2010)

2. Chen, L., Özsu, M.T., Oria, V.: Robust and fast similarity search for moving object
trajectories. In: Proc. of SIGMOD 2005. pp. 491–502 (2005)

3. Chintalapudi, K., Iyer, A.P., Padmanabhan, V.N.: Indoor localization without the
pain. In: Proc. of MobiCom 2010. pp. 173–184 (2010)

4. Chitte, S., Dasgupta, S., Ding, Z.: Distance estimation from received signal strength
under log-normal shadowing: Bias and variance. IEEE Signal Processing Letters
16(3), 216 –218 (2009)

5. Constandache, I., Bao, X., Azizyan, M., Choudhury, R.R.: Did you see bob?: human
localization using mobile phones. In: Proc. of MobiCom 2010. pp. 149–160 (2010)

6. Constandache, I., Choudhury, R.R., Rhee, I.: Towards mobile phone localization
without war-driving. In: Proc. of INFOCOM 2010. pp. 1–9 (2010)

7. Fujii, S., Nomura, T., Umedu, T., Yamaguchi, H., Higashino, T.: Real-time trajec-
tory estimation in mobile ad hoc networks. In: Proc. of MSWiM 2009. pp. 163–172
(2009)

8. Harter, A., Hopper, A., Steggles, P., Ward, A., Webster, P.: The anatomy of a
context-aware application. In: Proc. of MobiCom 1999. pp. 59–68 (1999)

9. Higuchi, T., Fujii, S., Yamaguchi, H., Higashino, T.: An efficient localization al-
gorithm focusing on stop-and-go behavior of mobile nodes. In: Proc. of PerCom
2011. pp. 205–212 (2011)

10. Kloch, K., Lukowicz, P., Fischer, C.: Collaborative PDR localisation with mobile
phones. In: Proc. of ISWC 2011. pp. 37–40 (2011)

11. Krumm, J., Hinckley, K.: The NearMe wireless proximity server. In: Proc. of Ubi-
Comp 2004. pp. 283–300 (2004)

12. Peng, C., Shen, G., Zhang, Y., Li, Y., Tan, K.: BeepBeep: A high accuracy acoustic
ranging system using COTS mobile devices. In: Proc. of SenSys 2007. pp. 1–14
(2007)

13. Steinhoff, U., Schiele, B.: Dead reckoning from the pocket — an experimental
study. In: Proc. of PerCom 2010. pp. 162–170 (2010)

14. Wertheimer, M.: Laws of organization in perceptual forms (1938)
15. Woodman, O., Harle, R.: Pedestrian localisation for indoor environments. In: Proc.

of UbiComp 2008. pp. 114–123 (2008)
16. Yin, J., Yang, Q., Ni, L.M.: Learning adaptive temporal radio maps for signal-

strength-based location estimation. IEEE Transactions on Mobile Computing 7(7),
869–883 (2008)

