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Abstract—Indoor localization has attracted much attention
recently due to its potential for realizing indoor location-
aware application services. This paper considers a time-critical
scenario with a team of soldiers or first responders conducting
emergency mission operations in a large building in which
infrastructure-based localization is not feasible (e.g., due to
management/installation costs, power outage, terrorist attacks).
To this end, we design and implement a collaborative indoor
positioning scheme (CLIPS) that requires no preexisting indoor
infrastructure. We assume that each user has a received signal
strength map for the area in reference. This is used by the
application to compare and select a set of feasible positions,
when the device receives actual signal strength values at run
time. Then, dead reckoning is performed to remove invalid
candidate coordinates eventually leaving only the correct one
which can be shared amongst the team. Our evaluation results
from an Android-based testbed show that CLIPS converges to
an accurate set of coordinates much faster than existing non-
collaborative schemes (more than 50% improvement under the
considered scenarios).

I. INTRODUCTION

Location-based services have received a lot of attention in
recent years as they can deliver customized services based on
people’s locations. Outdoor services can be efficiently deliv-
ered with standard localization techniques supported in off-
the-shelf mobile devices (e.g., GPS, cell-tower localization).
In contrast, indoor location services generally require some
form of infrastructure, e.g., Wi-Fi access points [25], [10],
[5], [1], [2], [8], acoustic beacons [9], [26], [28], and RFID
tags [17], [30], [8], [24] with quite a bit of customization.
Our work is motivated by a time-critical indoor scenario

with a team of soldiers or first responders conducting
emergency mission operations (e.g., firefighting, rescue, or
urban military operations). Fast and accurate localization
would help team members navigate an area of interest and
sharing situational-awareness would facilitate in successful
mission operations. Infrastructure-based localization, how-
ever, is often not the best solution in emergency scenarios
for several reasons. The team may not have enough time
to (install and) configure localization infrastructure such as
Wi-Fi and acoustic beacons. In reality, maintaining such
infrastructure for the mission operations in every building
a priori may be neither practical nor economically feasible.
In some emergency cases, infrastructure may not be even
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available to begin with due to a power outage or terrorist
attacks.
In such a scenario, it is imperative to use infrastructure-

free localization. The most common solution is inertial navi-
gation (also known as dead reckoning) that tracks the current
position of a user by constantly monitoring heading changes
and traveled distance with inertial sensors (e.g., gyroscope
and accelerometer) [29]. However, inertial navigation often
suffers from slow convergence and large errors due to
relative lack of indoor position landmarks, with detrimental
effect on time-critical indoor missions. It is possible that the
rate of increment in position error is higher than the rate
at which it is fixed with a floor map (e.g., map matching
with turn detection) [20], [15], [11]. This problem will be
even more pronounced when a team explores a large and
complex building (e.g., entering an underground parking lot
and then moving to a locus of events at the fifth floor). For
timely localization, it is well known that we need to employ
additional mechanisms (e.g., manual inputs, infrastructure
support); unfortunately, existing solutions are less appealing
to the emergency scenario under consideration.
To mitigate this problem, we propose a collaborative

indoor positioning scheme (CLIPS) that leverages peer-to-
peer Wi-Fi beaconing and accurate dead reckoning. In our
scheme, mobile users measure the received signal strength
(RSS) values from other peers. Given that for safety oper-
ations a response team can access a floor plan, we propose
to build a realistic signal strength estimation map a priori
(e.g., using a wireless signal propagation simulator such
as ray tracing). This map allows the application to search
for a set of possible coordinates in which the calculated
RSS values match the observed RSS values. To handle
potential wireless signal fluctuations, we relax that a match
can happen when the difference of RSS values is within
the threshold value, a tunable system parameter (called a
slack variable). Although this process will initially produce
a large number of false candidate positions, they can be
efficiently eliminated with dead reckoning; i.e., as a user
moves along the corridors, invalid candidates will quickly
lead to dead-ends. Every peer will repeat this procedure,
and thus, each team member can quickly locate his position;
in general, the larger the number of members, the faster
the convergence time. Whenever all members have acquired
their position fixes, Wi-Fi beaconing can be suspended to
conserve battery; dead reckoning continues to track each
user’s current position. In the subsequent processes, we can
drastically reduce the search space (and convergence time) as
it is sufficient to consider the close-by locations to a node’s
current position (e.g., with fixed radius).
The main contribution of this paper is to show the

feasibility of infrastructure-free indoor localization by lever-
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(a) Acquire a floor plan (b) Generate an RSS map using a ray-tracing
based RF simulation
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(e) Remove invalid candidates via dead reckon-
ing (e.g., 5 invalid coordinates)

User 1 User 2

User 3

User 4

(f) Share a discovered position with other team
members (via Wi-Fi or cellular network) such
that others can further eliminate invalid coordi-
nates

Figure 1. CLIPS overview

aging collaborative Wi-Fi beaconing and dead reckoning.
Our field experiment results with Android smartphones
confirm that CLIPS provides accurate position fixes much
faster than non-collaborative schemes; i.e., travel distance
to acquire an accurate fix was less than half of that in
a non-collaborative scheme. In the following sections, we
provide a brief overview of CLIPS (Section II) and detail
the core components (Section III). Then, we report the test-
bed experiment results in Section IV. Finally, we conclude
the paper in Section VI.

II. CLIPS OVERVIEW

Our objective is to help a group of rescuers localize
themselves on an unfamiliar floor-plan without any infras-
tructure support. We assume that the team has acquired a
floor plan a priori (say as in Figure 1(a)). The floor-plan
is processed to form an overlay of an N × N grid as
shown in Figure 1(b). The grid dimensions are determined
by the granularity of location information required in the
applications for missions operations; we use a 2m × 2m
grid in our experiments. Also, for every coordinate on the
floor, we compute Received Signal Strength (RSS) values
from every other coordinate on the floor, using a ray-tracing
based RF propagation simulation and generate an RSS map
of N × (N-1) dimension. We assume that the rescue team
members have homogeneous mobile devices and download
the floor plan and this estimated RSS map a priori.
Figure 1(c) depicts what happens once the team members

enter the target building/floor. Each mobile node performs
periodic Wi-Fi beaconing through which RSS values of
reachable team members can be observed. These RSS values
are then matched against the RSS map downloaded a priori,
and this will generate a list of all feasible coordinates on
the floor. We will present the detailed matching algorithm
in Section III-B. After finding these feasible coordinates, we
perform dead reckoning to eliminate all the false positives

from the list. By tracking heading changes and distance
walked over a map, we update every feasible coordinate.
However, if it leads to a dead end, we eliminate the coordi-
nate. A simple example is given in Figure 1(e). We repeat
this process until there is only one coordinate remaining.
Once a user localizes himself correctly, he can broadcast
his position on the map to the rest of the nodes (as shown
in Figure 1(f)) such that they can further eliminate invalid
coordinates in their list. This also allows each team member
to know the position taken by every other member.

III. CLIPS SYSTEM DETAILS

We illustrate the core components of CLIPS, namely
(1) floor plan pre-processing and RSS map generation, (2)
feasible coordinate estimation and location convergence, and
(3) accurate map matching with dead-reckoning.

A. RSS Map Generation

Our positioning scheme requires a floor map for each
site. Such a floor map can be obtained from floor plan
information or Geographic information system (GIS) data.
We assume that the emergency team can access a digital map
from a service provider who recognizes a given floor plan
image and builds a digital floor map—architectural floor plan
image recognition has been extensively studied in the field of
GIS [13]. Recently, similar services have been launched such
as “Google Maps Floor Plans” for WLAN indoor positioning
that accept users’ uploaded floorplan images [3].
Next, an RF propagation model (e.g., the log-distance path

loss model) can be used to predict RSS values for each
coordinate on the floor plan and get the pathloss simulation
data. Using this model reduces the number of RSS measure-
ments significantly compared to RF fingerprinting schemes,
albeit at the expense of degraded localization accuracy.
Since RF propagation characteristics vary widely (especially
indoor), the model parameters would have to be estimated
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specifically for each indoor space of interest. For example,
Anderson et al. presented measured data for 2.5GHz in-
building partition loss [7].
Ray-tracing has also been widely used, and some tracing

models consider the details of a place, such as walls,
windows, doors as well as desks, chairs and the thickness of
walls to pursue the best accuracy. It approximates the radio
propagation with a finite number of isotropic rays emitted
from a transmitting antenna by a ray imaging technique. In
this technique, the transmitter is assumed to be reflected at
each surface around it to produce image transmitters, the
reflected rays to the receiver from the real transmitter are
considered as direct paths from the mirror images of the
true transmitter. Based on geometrical optics, each ray from
the transmitter to the receiver can be exactly determined. The
major drawback of such techniques is, however, expensive
computation complexity. Readers may refer to detailed ray-
tracing technique in [19], [27], [14], [22], [18]
All models could be used in our simulation. However, in

order to pursue reasonable balance between effort of floor
map modeling, simulation time and accuracy, we take the
following modeling and simulation: we consider all the solid
lines in a floorplan as walls where windows are regarded as
walls and doors are not drawn (we assume they are always
open since mobile nodes walk through), and all the spaces
surrounded by the solid lines as accessible spaces. With this
indoor modeling, we use a simplified (reduced) 3-ray tracing
in the experiments (provided by Wireless InSite software [4])
where diffraction along obstacles are considered. In practice,
however, the measured signal strengths tend to fluctuate
due to small scale fading. While this phenomenon can be
mitigated by conducting multiple measurements to find the
average RSS values, a node may still suffer from temporal
fluctuation (thereby having chances of excluding the true
position). To solve this problem, we introduce a slack
parameter α (usually ±13dB in our setting). We will further
justify this approach with measurement results in Section
IV.

B. Feasible Coordinate Estimation

From each beacon log (i, j, ss)t of node j where ss is
a received signal strength from node i at time t, node j
estimates the path loss value in this communication (denoted
as m(i, j)). For this purpose, we assume that transmission
power and other factors such as sender antenna gain/loss and
environmental noise are almost common and constant on all
mobile nodes. We note that these values may be hardware-
dependent, but pre-measurement before localization (before
mission starts) is effective to know such values.
1) Positioning problem formulation: We focus on the

positioning activity of node j. Given a floor plan of fp
with N grids, let L : N2 → R+ denote a path loss matrix
amongN points where element (u, v) ∈ N2 is the simulated
path loss from points u to v. Also, let Mj denote the set
of node j and the nodes that node j has a beacon log at
time t. Let m : Mj × {j} → R+ denote the set of path
loss measurements of node j at time t (i.e. m(i, j) is the
measured path loss value from nodes i to j).
The positioning problem of node j is to find node j’s

position from the N points with the least distance from the
true position. Our approach is to find such a position by
using the positioning function p : Mj → N with the least

“path loss matching error” between m and L. The objective
function is defined to minimize such pathloss matching error
as follows.

min
∑

i∈Mj

|m(i, j)− L(p(i), p(j))| (1)

We note that if path loss increases as the square of distance
(like free-space attenuation), we should find such p that
has the least square deviations. Nevertheless, we adopt this
simple sum of deviations since such path loss characteristics
are highly situation-dependent, and it is therefore hard to
accurately determine such an attenuation coefficient.
As we addressed earlier, we need to accommodate mea-

surement errors caused by fluctuation of RSS values. We
should allow some deviation parameter α where a measured
path loss l′ and a simulated path loss l are regarded identical
iff l′ ∈ [l−α, l+α], and choice of appropriate α will further
be investigated in Section IV. Then using function z where
z(l′, l) = 1 iff l′ ∈ [l − α, l + α] and z(l′, l) = 0 otherwise,
we may use the following objective function instead of (1).

max
∑

i∈Mj

z(m(i, j), L(p(i), p(j))) (2)

This leads us to find p that maximizes the number of path-
loss-matched edges in m and L.
2) Algorithm and Complexity: Assume graph G =

(Mj ,m) and complete graph H = (N,N2). The above
optimization problem is the maximum common subgraph
isomorphism problem (MCSI problem) in graph theory,
which finds an induced graph G′ of G in H with objective
function (2). Although the general MCSI problem is known
to be NP-hard, our problem is a special class of MCSI in
that we have a graphG with a star topology centered at node
j. Therefore, if j is allocated to point v ∈ N , calculation of
objective function (2) in this case can be induced to the fol-
lowing problem; (i) for each edge (i, j) ∈ m find all possible
edges (u, v) ∈ N2 that satisfies z(m(i, j), L(u, v)) = 1, and
(ii) find the positioning function p : Mj → N from (i) with
objective function (2). Part (i) needs exhaustive tests of edge
pairs in G andH respectively, and part (ii) can be induced to
the maximum bipartite matching problem in the graph where
Mj and N are bipartite vertices and possible allocations of
nodes in Mj to points in N found in part (i) as well as
(j, v) are edges. The computation complexity of part (i) is
O(|Mj ||N |) and that of part (ii) is also O(|Mj ||N |) by the
path matching algorithm [12]. Thus, the complexity of our
optimization algorithm is given as O(|Mj ||N |2) to apply the
above parts (i) and (ii) to all points in N . The pseudocode
is given below.

C. Location Convergence via Indoor Path Tracing

Our indoor path tracing mechanism, over a floor plan, uses
the smartphone’s sensors to collect movement direction and
distance, which is known as dead reckoning. The challenge
is to use unreliable inertial sensors in smartphones (e.g.,
magnetometer, accelerometer) to accurately track a users
path.
We use Android’s heading and magnetic field sensor

to identify direction of the movement. During our initial
implementation, we observed compass readings have some
bias in addition to the fluctuation caused by even a slight
sway, irregularity in motion and by magnetic fields in the
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Algorithm 1 Positioning algorithm for node j

1: procedure find possible positioning functions (Mj , m, N , L)
2: k ← 0; F = ∅
3: for each v ∈ N do
4: E ← (j, v)
5: for each pair of edges (i, j) ∈ m and (u, v) ∈ N2 do

6: E ← E ∪ (i, u) if z(m(i, j), L(u, v)) = 1
7: end for
8: E′ ← bipartite graph matching result for ((Mj , N), E)
9: if |E′| > k then

10: F ← E′; k ← |E′|
11: else if |E′| == k then
12: F ← F ∪E′

13: end if

14: end for
15: return F as a set of positioning functions
16: end procedure
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Figure 2. CS department building map: 1 (accessible), 0 (inaccessible),
and W (wall)

surroundings. In order to overcome these errors and to
accurately detect significant heading changes at a corner
while taking a turn, we use a recently proposed method by
Constandache et. al. [11]; and use the following condition
for turn detection:

Avg(t(i+1))−Avg(ti) ≧
StdDev(ti) + StdDev(ti+1)

2
(3)

where Avg(ti) denotes the average compass readings over
a ti time period, StdDev(ti) denotes standard deviation of
compass reading during ti, and G denotes a guard factor.

Next, we compute the distance traveled by a user as a
product of number of steps taken and the step stride length.
According to [11], the technique of double-integrating accel-
eration readings could induce a large error even with small
distance travelled. Our algorithm to calculate user step count
reads accelerometer data continuously, filters out the noise
and infers an increment in step count based on changes in
the observed readings.

We converted an example floor plan into a N ×N matrix
as shown in Figure 2 (2m × 2m grids). This map comprises
of symbols {1, 0,W}, where 1 represents accessible points,
0 represents inaccessible points, and W is for walls. After the
initial Wi-Fi scan, all possible 1s on the grids are enlisted.
Every time a distance equal to that between two coordinates
on the grid (2m) is traveled by the user, the path tracking
module records user’s direction of movement. Based on the
observed movements, each coordinate in the list is updated
and coordinates which fall on a “0” or “W” are eliminated.
This process of elimination continues iteratively as the user
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Figure 3. Stride length as a function of speed of walking (different gender
and height)

moves around by changing directions and eventually narrows
down to a single point on the grid which represents the users
true position. Once one user locates himself correctly, he can
broadcast his position to other team members such that they
can further eliminate their invalid coordinates faster.
Accurate estimation of distance walked: Experimentally

we observed that walking speed also plays a crucial role in
the calculation of the stride length. Therefore, we incorpo-
rated the moving speed and the corresponding stride length
into our system. Our profiling approach consisted of two
modes. In the profile creation mode, a user trains the system
for his specific stride lengths for different walking speeds. In
our experiments, we created four separate profiles for users
of different heights and gender. The participants walked
100m in different speeds to train the system. This calibration
process can be automated with GPS: a user simply walks a
straight line of 100 meters. By walking a long distance, we
can effectively eliminate the impact of GPS errors. Figure 3
shows the results of our experiments. It can be observed that
independent of the height and gender, a user’s stride length
increases as the walking speed increases. It is also closely
related to the user’s walking styles. For example, a female
of height 5.83 feet walking at a speed of 5 mph has similar
stride length as that of a male of height 5.90 feet. This
example justifies why it is necessary to use a personalized
step profile to obtain more accurate distance traveled. It is
noteworthy that height is not directly related to stride length,
as claimed in [6].
Table I and Table II show the error percentage (distance

deviation from the ground truth) in distance traveled for
average (statistical) stride length and profiling stride length,
respectively. According to [6], the average stride length for
a male of height 5.83 feet is given as 0.737m (fixed value
regardless of walking speed). Similarly for a female of
height 5.5 feet, it is given as 0.637m. Since stride length
naturally increases with walking speed, this fixed stride
length based approach tends to become more inaccurate at
higher speeds increasing the error percentage. In contrast,
our profiling based approach does well here. For instance,
for a male of height 5.83 feet, the stride at moderate
speed was observed to be 0.79, 1.39m at fast speed and
1.67m at running speed. When this information was used,
the difference between the true distance and the calculated
distance (as stridelength×stepcount) dropped drastically.
This dynamic adaptation is very important for our target
scenario since the firefighters or rescuers could be walking
and running intermittently for emergency operations.
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Table I
A MALE’S (5.83 FEET) AVERAGE STRIDE LENGTH AND STEP-PROFILING

RESULTS AT THREE DIFFERENT STEP SPEED LEVELS

Speed Mod Fast Run

Distance (m) 100 100 100

Lap Time (sec) 74.5 44.7 31.9

Observed # of step 127 77 68

# of Step (Ground Truth) 127 84 71

Male Stat
Step len (m) 0.737 0.737 0.737
Dist Err 6.4 42.04 49.884

Male Profile
Step len (m) 0.79 1.28 1.42
Dist Err 0.33 1.44 3.44

Table II
A FEMALE’S (5.5 FEET) AVERAGE STRIDE LENGTH AND

STEP-PROFILING RESULTS AT THREE DIFFERENT STEP SPEED LEVELS

Speed Mod Fast Run

Distance (m) 100 100 100

Lap Time (sec) 74.5 44.7 31.9

Observed # of step 121 77 75

# of Step (Ground Truth) 125 86 77

Female Stat
Step len (m) 0.673 0.673 0.673
Dist Err 18.93 48.179 49.525

Female Profile
Step len (m) 0.82 1.32 1.42
Dist Err 0.78 1.64 5.08

IV. TESTBED EXPERIMENTS

A. Experiment Setup

To test overall system performance in the real-world
scenarios, we performed field tests in the CS department
building. We first generated a preprocessed floor plan with
a grid overlay as shown in Figure 4. We performed field tests
by varying the number of team members ranging from 2 to
9. We used stride length profiles for accurate dead reckoning.
The same floor plan was used for path tracking (Figure 2).
To verify how the system performance is influenced by the
nature of a route traveled by a user (i.e., the number of corner
turns and the length of a straight line taken by a user), we
deliberately chose three representative routes. These routes
are Route #1, Route #2 and Route #3 shown in Figure
4. Each route starts from the same starting point but while
Route #1 comprises of a long straight line path with just a
single turn, Route#2 contains more turns with long enough
straight line paths between two consecutive turns. Route#3
contains many turns with very short straight line paths after
each turn.

B. Experimental Results

We analyzed the performance of CLIPS by evaluating the
following: (1) impact of the team size and the slack value (2)
convergence delay variation when taking different routes, (3)
convergence accuracy with and without stride length profiles,
and (4) overall convergence delay.
Impact of team size and slack value: Figure 5 shows

feasible coordinate ratio with a different number of peers.
We also varied the slack value of α to find a good estimate.
Note that the value should be small enough to eliminate
more infeasible points but big enough to not to miss the

  

! 

" 

Figure 4. Preprocessed floorplan and Route #1,#2, and #3

true location. The feasible coordinates ratio is calculated
by dividing the number of feasible coordinates by the total
number of coordinates in the floor plan (48×48 coordinates).
While the α values showed a positive relationship with
feasible coordinates ratio, we observed that the number
of false positives decrease as we increase the number of
peers. Figure 6 illustrates the hit ratio that is the probability
of containing the true positive position in the matched
outcomes. As Figure 5 shows, we varied the number of
team members and also the size of α value to observe the
system behavior in different cases. As we increase α, this
probability reaches 1. Another interesting observation is that
a smaller team (with few members) requires smaller size of
α value in order to have the current position in the initial
scan. For example, a one-member team with α value of
9dB was observed to scan the current position with 100%
accuracy, while an 8 members team requires the α value of
15dB to have the same probability.
Convergence speed when taking different routes: Among

the overall system performance metrics, convergence speed
to the unique point accurately is one of key factors for the
proposed scheme. We investigated how this factor is affected
by the characteristics of routes and by the use of peer to peer
exchange of RSS. As illustrated earlier, we carefully chose
three representative routes, namely Route #1 (including
long straight line and a turn), Route#2 (including moderate
straight line path and few turns), and Route #3 (including
short straight line and many turns) to see which of the two
factors, having long straight line, or the number of turns,
affects the convergence speed more. We measured 20 times
on each route and evaluated the success ratio of two different
stride approaches.
Figure 7 shows the fraction of feasible coordinates as

a function of traveled distance. Route #1 shows rapid
drop of infeasible coordinates ratio in the beginning, but
after 20m, the ratio decreases slowly. This was because
there are multiple points on a straight line remained as
candidates. Nonetheless, when a turn is taken after 60m,
our algorithm converges. Route #2 shows the slowest
convergence speed as it contains relatively small number
of straight lines and turns. Route #3 shows the fastest
convergence speed as it contains many turns. Thus, based
on our observation, a complicated route tends to expedite
the process of convergence to a unique point. We noted
that even without peer to peer RSS exchange and matching,
the convergence results showed the similar trends, but in all
three routes, this caused the user to travel longer distance
to converge to a unique point. Figure 8 shows the distance
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Figure 5. Feasible coordinate matching ratio
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Figure 6. Probability of containing the current
position
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Figure 7. Convergence speed based on different
routes with and without beacon RSS
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traveled on the different routes till convergence, with and
without RSS.

Convergence accuracy with stride length profiles: Accu-
rate dead reckoning with stride length profiling is another
key feature of the proposed scheme. To evaluate this, we
performed the field tests: 20 times per route using two
different stride length approaches, namely average (fixed)
stride length and variable stride length with profiling. Since
users are navigating indoors, it is highly necessary to have
accurate displacement logging in the map shown in Figure 2.
Unlike the average stride length approach, our step profiling
uses dynamic stride length to calculate traveled distance.
Eliminating false positives on the floor plan based on using
this scheme would be more accurate. For instance, at the end
of a corridor, both late and early, than required, changes
of direction will cause failure of convergence to a unique
position. Figure 9 shows the convergence ratio of two
different mechanisms (fixed vs. variable), namely average
stride length and step profiling approaches, which is well
matched with distance deviations for both male and female
shown in Table I and II, respectively. Since step profiling
provides accurate distance measure so it provides 100% hit
ratio on Route #1 but slightly degraded performance on
Route #3. This can be attributed to the error in com-
pass readings, caused by the magnetic field variation in
surrounding. Even when profiling calculated the distance
travelled correctly, error in orientation caused the inaccurate
results. Note that to eliminate these errors, gyroscope and
accelerometer can be used in addition to the orientation
sensor as explained in [29], which is part of our future
work. In our experiments, the average stride length approach
significantly underestimated the actual distance traveled in
a long straight corridor, resulting poor performance (32%).
In the case of Route #3, the use of average stride length

showed relatively reliable performance due to many turns in
the path.
Overall convergence delay of CLIPS: Figure 10 shows

the aggregate time taken to converge to a unique point with
step profiling in the three routes. The initial Wi-Fi scanning
and matching took almost constant time for all the three
scenarios. The delay difference mainly comes from the fact
that users are traveling different routes. Overall, the delay
is dominated by the traveling time, and Wi-Fi scanning
and matching delay are much smaller when compared to
the traveling delay. Figure 8 shows that Route 2 requires
longer distance trip to converge to the unique point, which
consequently takes the longest times compared to the other
two routes.

V. RELATED WORK

We consider two types of localization schemes that are
closely related to CLIPS, namely inertial sensor based and
model based localizations. For a complete survey of existing
schemes, readers may refer to recent survey papers [16],
[21].
Inertial sensor based localization: For a robot to navigate

through an indoor environment, it must have the ability to
determine its current location. Initial approaches provisioned
the robot with a map of the indoor environments, allowing it
to determine its location by comparing its observed environ-
ment to the map (e.g., using ultrasound or LADAR sensors).
A significant step in the area of robotics was Simultaneous
Localization and Mapping (SLAM) [20], which allowed a
robot to build a map of the indoor environments (in terms of
walls and other obstructions) while simultaneously determin-
ing its location with respect to the constructed map. Martin
et. al. proposed an application for indoor localization with
smartphones which use only the hardware embedded within
the phone and integrating both online and offline phases of
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RSS fingerprinting within the same device [23]. As shown
earlier, the main drawback of these approaches is that they
mostly suffer from slow convergence and large cumulated
errors due to relative lack of position fixes indoors, which
is detrimental to the time-critical indoor missions. To the
best of our knowledge, our work is the first of its kinds
that leverages both collaborative Wi-Fi beaconing and dead
reckoning to drastically reduce the convergence time.
RF model based localization: An RF propagation model

such as the log-distance path loss (LDPL) model can be
used to predict RSS at various locations in the indoor
environment. The advantage of using these models is that
it reduces the number of RSS measurements dramatically
compared to RF fingerprinting schemes, albeit at the cost
of decreased localization accuracy. Since RF propagation
characteristics vary widely, the model parameters would
have to be estimated specifically for each indoor space in
question. ARIADNE [18] uses sniffers at known locations
but makes use of a more sophisticated ray-tracing model
based on detailed indoor maps and uses simulated annealing
to estimate radio propagation parameters. Given the signal
measurements for a mobile, a proposed clustering algorithm
searches that signal strength map to determine the current
mobile’s location. As discussed earlier, existing schemes
require some kinds of infrastructure (e.g., fixed Wi-Fi APs,
sniffers) which may not be available in an emergency
scenario under consideration. The main departure is that
CLIPS leverages mobile Wi-Fi beacons (i.e., other team
members) to determine a set of coordinates and then employs
dead-reckoning over a map to reduce the set and to pinpoint
the real positions.

VI. CONCLUSIONS

We proposed a novel infrastructure-free collaborative in-
door positioning system called CLIPS. Given that for emer-
gency operations, the floor map and blueprints of a building
are accessible, we proposed to build a realistic received
signal strength (RSS) map using ray-tracing. When the
mission starts, each team member uses the periodic peer-to-
peer Wi-Fi beaconing to identify a set of feasible coordinates
consistent with the RSS map. CLIPS can quickly remove in-
valid candidate coordinates and converge to a user’s current
position via dead reckoning over a floor map and information
sharing of discovered coordinates. Our evaluation results
with testbed experiments confirmed that CLIPS provides
accurate localization with much lower position fix delay
when it is compared with a non-collaborative scheme.
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