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Abstract—In this paper, we propose an algorithm to estimate
2D shapes and positions of obstacles such as buildings using
GPS and wireless communication history of mobile nodes. Our
algorithm enables quick recognition of geography, which is
required in broader types of activities such as rescue activities
in emergency situations. Nevertheless, detailed building maps
might not be immediately available in private regions such
as large factories, warehouses and universities, or prepared
maps might not be effective due to collapse of buildings
or roads in disaster situations. Some methodologies adopt
range measurement sensors like infra-red and laser sensors
or cameras. However, they require dedicated hardware and
actions for the measurement. Meanwhile, the proposed method
can create a rough 2D view of buildings and roads using
only wireless communication history between mobile nodes
and position history from GPS receivers. The results from the
experiment conducted in 150m×190m region on our university
campus assuming rescue and treatment actions by 15 members
have shown that our method could generate a local map with
85% accuracy within 350 seconds. We have also validated
the performance of our algorithm by simulations with various
settings.

Keywords-wireless ad-hoc connection; GPS; map generation;
rescue activity;

I. INTRODUCTION

Situation awareness is the basis of ubiquitous society. We
try to sense or capture physical phenomena like change of
temperature and raining, or try to recognize and analyze the
forms, locations and behavior of the real world’s objects
(such as vehicles and pedestrians) and landscape.

We have learned that such situation awareness is also
very significant for rescue operations in case that many
people are suddenly injured by a large accident or a disaster
in small and condensed space. For example, in Japan,
we have experienced a very tragic train accident in 2005
where over 100 people died and about 460 people were
injured. It is reported that in such a situation, rescue teams
need to recognize the positions and conditions of injured
people for efficient rescue operations [1]. Our research group
has started to design and develop an electronic “triage”
system. It continuously senses the vital signs of the injured
people and estimates their locations by IEEE802.15.4 ad hoc
networks. We are leading this national project involving 5
organizations with several medical doctors and professors in
emergency care department [2].

These doctors say that fast recognition of obstacles such
as buildings in the region will be very helpful for rescue
operations and treatment actions. Therefore, a local map of
the site, which tells us building and street structure informa-
tion in a city section, presence of warehouses in a factory,
or complicatedly-connected small buildings on university
campus, is desired. However, such a local, thus detailed map
is not obtained from a public map especially if the region
is private property, or even pathways (or streets) may be
changed after a disaster. Using digital images of landscape or
range information from radar sensors is a possibility to build
a map, but dedicated effort (i.e. taking pictures or measuring
ranges at specific points toward specific directions) to obtain
such information is required. It encumbers efficient rescue
operations since doctors and rescue workers always need
manpower for treatment actions. Thus automated acquisition
of a local map without dedicated hardware is mandatory in
such emergency situation.

In this paper, we propose a local map generation algorithm
for recognition of an accident site in emergency situation.
We assume that each member in rescue teams, called a mo-
bile node, is equipped with a GPS receiver and a mid-range
communication device like IEEE802.11 or IEEE802.15.4
that can communicate with others several tens of meters
away. Since such equipment is very general, the algorithm
does not require dedicated devices. The algorithm estimates
movable areas and obstacles using position information from
GPS receivers and communication logs between mobile
nodes. We clarify the challenges in this automated gener-
ation of local maps using such simple equipment; we need
to take into account that GPS errors and uncertainty of radio
propagation with presence of obstacles may have negative
effect on map accuracy. To cope with this problem, we con-
ducted several preliminary field experiments. Based on the
results, we take an approach using probabilities and counters
in order to determine whether each sub-region is occupied by
an obstacle or is in movable space. After generating rough
form of obstacles, image processing techniques are applied
to increase the readability of the map.

A field experiment and several simulation experiments
were conducted to validate the effectiveness of the algorithm.
Especially, in the field experiment, we have generated a
local map of 150m×190m region on our university campus.
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The results from those experiments have shown that the
maps with about 85% accuracy were generated within 350
seconds.

II. RELATED WORK

Recognizing shapes, materials and positions of objects
using cameras and sensors has been considered in many
application domains for different purposes. In the Intelligent
Transport Systems (ITS), many methodologies have been
designed for vehicles to recognize obstacles and pedestrians
to assist safe driving. For example, Ref. [3] proposes a
method that identifies pedestrians and obstacles on roads
using stereo cameras and range measurement sensors like
infra-red sensors and laser sensors.

Also, in the robotics area, Simultaneous Localization
and Mapping (SLAM) techniques [4], [5] are considered
important to control the movement of autonomous robots in
unknown environments like disaster scenes. These SLAM
techniques build maps of surroundings and simultaneously
estimate the positions of mobile robots. The methods in
Refs. [4], [5] assume that each robot has cameras, range
measurement sensors and gyroscope, and the robot creates
local maps using the information from these devices. Then
the methods create an entire map of the environment by
fusing the local maps based on the positions of mobile
robots estimated by dead reckoning. In this way, the SLAM
methods require accurate distance to obstacles and consid-
erable computation power to process enormous amount of
data from the devices.

Meanwhile, some methods of localizing nodes in sensor
networks try to estimate such topology that involves “holes”
where no node exists and no communication occurs over
them [6], [7]. However, it is designed for sensor networks
with a large number of stationary nodes. Therefore it is very
difficult to apply them to our problem.

Our contribution is two-fold. First, we only use ad hoc
wireless communication devices and GPS receivers of mo-
bile nodes. Since they are very general nowadays and they
do not require dedicated actions for measurement, it can
be used in rescue operations [2] or many other cases.
Secondly, estimating obstacle maps using those devices is
a very new and challenging problem. For this problem, we
have developed an efficient and practical algorithm using
both position and communication history of mobile nodes,
incorporating image processing techniques.

III. PROBLEM STATEMENT AND ALGORITHM DESIGN

A. Problem Statement

In Fig. 1, we exemplify the environment where our
algorithm works. A targeted region consists of movable
space such as pathways, and obstacles such as buildings.
We assume that a mobile node (or simply a node) is a
person who has a wireless terminal and can move only
in movable space. Each node has a GPS receiver and
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Figure 1. Environment for proposed algorithm.

periodically measures its current position. This position
information contains some error range, which is unknown
in the algorithm. It also has a mid-range communication
device such as IEEE802.11 and IEEE802.15.4. After every
position measurement, it transmits a beacon message that
contains the measured position. We assume that each node
roughly knows global time that is easily obtained from its
GPS receiver.

Every time node i measures its position, it records (i, pi, t)
where pi and t are the measured position and time, respec-
tively. This is called a GPS log. In addition, when node j
receives a beacon message from node i that contains pi, node
j records (i, j, pi, pj , t) where t denotes the reception time
of this message (global time) and pj is the latest measured
position of node j. This is called a communication log. Both
the GPS logs and communication logs collected by mobile
nodes are aggregated on a single server. We assume that
delivery of those logs is done in some ways; for example,
mobile nodes can give them to their base stations when
they can communicate with the base stations or by multi-
hop transmission over the mobile nodes. On the server, our
algorithm estimates the shapes and positions of obstacles.

The problem treated in this paper is to estimate the
movable space and obstacles in a targeted area as accurately
as possible using all the GPS logs and communication logs.

B. Map Generation – Challenges and Approaches

We propose a centralized algorithm. The outline of our
algorithm is shown by the produced maps in Fig. 2. The
algorithm consists of two independent map estimation pro-
cedures; (i) estimation of movable space by GPS logs (called
GPS-based estimation procedure, map (a) of Fig. 2) and
(ii) estimation of obstacles by communication logs (called
communication-based estimation procedure, map (c) of Fig.
2). After the GPS-based estimation procedure, an image
processing technique called closing is applied (map (b)).
Finally, two maps (b) and (c) are merged into a single
map (d), and then refined by an original image processing
technique called rectangular approximation (map (e)).
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(c) communication-based estimation procedure
original map (e) rectangular approximation(d) merging

:obstacle:movable space:not decided
(a) GPS-based estimation procedure (b) closing

Figure 2. Algorithm outline.
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Figure 3. RSS and packet reception ratio (versus distance).

In the following, we state the design consideration of
the two procedures, addressing challenges we face in the
problem.

1) GPS-based Estimation Procedure: Mobile nodes move
in movable space. Therefore, for each GPS log (i, pi, t),
position pi is in the movable space. In addition, for two time-
subsequent logs (i, pi, t) and (i, p′i, t+∆t), the estimated tra-
jectory is also in the movable space. Here, since the positions
may have errors, simplistic decision may fail to precisely
estimate the movable space. Our approach is a counter-
based one where for each small grid cell in the region
we count how many times the cell is marked as “movable
space”. Since GPS errors can be considered quasi-random
ones in terms of time, location and nodes, the cells in real
movable space will possibly have larger counts. Therefore,
this straightforward idea alleviates GPS measurement errors.

2) Communication-based Estimation Procedure: One
plausible approach for this goal is to consider the received
signal strength (RSS). We may derive the expected RSS
(denoted as r̂x) from a known radio propagation model
assuming there is no obstacle between pi and pj . Then
we compare the measured RSS rx with the expected RSS

r̂x, and see how much rx deviates from r̂x. Based on
this deviation, we may estimate the existence of obstacles
between pi and pj . However, several factors such as multi-
path signals or radio from other sources may interfere
with radio propagation and may fluctuate RSS values. For
example, for wireless LAN interferes with 2.4GHz radio
frequency, human bodies and humidity may also reduce the
signal power. In order to observe such phenomena, we have
conducted a simple field experiment. We have used ZigBee
modules JN5139[8] (Jennic Ltd.). The experiment was done
in open space without any obstacle, and two ZigBee modules
were set 1m above the ground. One module transmitted 26
bytes packets for every 1 second with transmission power
0 (dBm), and totally 10 packets were transmitted for each
distance. Fig. 3(a) shows the expected and measured RSS
values versus two nodes’ distance. To derive the expected
RSS, we have assumed 2.4GHz frequency, and have used
the two-ray ground model with λ = 0.125m and γ = −1
and the free-space model [9]. From this graph, we can see
that the measured RSS values fluctuated even in the same
distance case, and do not fit for the models even in this
stationary environment. Therefore we can easily conclude
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Table I
RSS CALCULATED BY KNIFE-EDGE DIFFRACTION MODEL

XXXXXXXXsender
receiver 3 4 5 6 7 8 9 10

packet reception ratio (%) 0 0 0 93.3 0 0 0 90.7
1 expected RSS by diffraction model (dBm) -108.7 -104.9 -99.2 -90.6 -112.7 -109.0 -103.1 -93.1

packet reception ratio (%) 0 13.7 59.8 94.4 0 0 0 91.7
2 expected RSS by diffraction model (dBm) -103.7 -100.7 -94.7 -87.0 -108.3 -104.6 -99.0 -90.6

sender module receiver module
10m 5m 5m 10m

7 8 9 10
34 5 61 2

Figure 4. Diffraction propagation.

that they are not applicable in mobile environment we are
assuming.

Since RSS is too sensitive, we consider using the packet
reception ratio. For two nodes that have shorter distance
than the expected maximum communicable range (denoted
by R), we can estimate the presence of obstacles between
two nodes based on the following intuitive rules; (1) if node
j could receive a beacon message from node i, there is no
obstacle between pi and pj , and (2) if node j could not
receive a beacon message from node i, there is an obstacle
between pi and pj . However, interference also affects the
packet reception ratio as in the case of RSS. For example, a
packet is not delivered even if there is no obstacle between
pi and pj and the distance between them was less than R.
Another concern is radio diffraction. A packet is delivered
even if there is an obstacle between pi and pj .

In order to see to what extent such phenomena happen,
we have also measured the packet reception ratio in the
previous experiment of Fig. 3(a). The result is shown in
Fig. 3(b). In ideal environment, the packet reception ratio
in this graph should be 100%, but actually around 10%
is lost due to some reasons. Also, to see the influence of
diffraction, we have used Jennic JN5139 (2.4GHz) as in
the previous experiment. As shown in Fig. 4, we put two
JN5139 modules. The sender was either located at point 1
or 2, and it transmitted 10,000 packets of 26 bytes with -
18dBm. The receiver was located at one of points 3-10 and
counted the received packets. We note that the RSS threshold
of JN5139 was −96dBm. The expected RSS was derived
using the knife-edge diffraction model [10]. Table I shows
the expected RSS values and packet reception ratio. From
the results, in any case that the line of sight is blocked by
the obstacle, the packet loss ratio was large and diffraction
merely occurred. The model indicates that in 2.4GHz RF,

the expected RSS was around -95dBm, which is almost the
RSS threshold. Since in most cases the measured RSS was
smaller than the expected one, packet delivery by diffraction
is not likely to occur. Consequently, we can take a simple
approach using the packet reception ratio instead of RSS,
but we still need to take into account that GPS errors and
unexpected loss of packets may obscure the decision. For
this, we introduce probability to represent the degree of
likelihood that the packet delivery is done as expected. Also,
to increase the confidence, we introduce counters as we did
in the movable space estimation procedure.

In the following section, we give the details of the
algorithm.

IV. ALGORITHM DESCRIPTION

The algorithm divides a targeted area into m × n square
cells, and estimates for each cell whether it is occupied by
an obstacle or not. Hereafter, a cell occupied by an obstacle
is called an obstacle cell and one in movable space is called
a non-obstacle cell. A cell at row a and column b is denoted
by ga,b (1 ≤ a ≤ m and 1 ≤ b ≤ n).

A. GPS-based Estimation Procedure

In GPS-based estimation procedure, for each GPS log
(i, pi, t), we find the cell containing pi. In addition, for two
subsequent GPS logs (i, pi, t) and (i, p′i, t+∆t), we find the
cells on the line segment pi-p′i.

Here, we denote each of such cells by c. c might be
likely to be a non-obstacle cell, but it should not be the
final decision due to ambiguity from GPS errors. Hence,
we determine that c is a non-obstacle cell only if mobile
nodes transit over cell c more than h times, where h is the
average number of mobile nodes’ transits over the cell. Here,
we explain how to determine the value of h. We let N , T
and V denote the number of mobile nodes, the time length
during which logs are collected, and the average speed (m/s)
of mobile nodes, respectively. Also the area is x × y (m2)
and the side length of a cell is denoted by g (m). Since
the expected time for a mobile node to transit from a cell
to its neighboring cell is g/V (s), the expected number of
cells all the nodes transit during time T is TV N/g. Also,
since the number of cells in the targeted area is xy/g2, the
average number of mobile nodes’ transits per cell is derived
by h = gTV N/xy.

Finally, to prevent non-obstacle cells, over which few
nodes transit, from being determined as obstacle cells, we
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:obstacle :movable space 

Figure 5. GPS-based estimation procedure.

dilation erosion
Figure 6. Closing technique.

apply the closing process, which is known as an image
processing technique [11]. Closing is used to reveal thin-
line characters and lines in figures, and consists of two steps,
dilation and erosion of white pixels. In our algorithm, we
regard obstacle cells as black pixels, and non-obstacle cells
as white pixels. In the dilation step, for each black pixel, it is
changed to a white pixel if it has more than five white pixels
as its adjacent cells. In the erosion step, for each white pixel,
it is changed to a black pixel if it has less than four black
pixels as its adjacent cells. We apply the dilation k times,
and after that apply the erosion k times (empirically k = 3
produces good results). Fig. 5 and Fig. 6 show examples of
GPS-based estimation and closing, respectively.

B. Communication-based Estimation Procedure

In the communication-based estimation procedure, for
each cell ga,b, we prepare two integer counters Ta,b and
Fa,b initialized by zero. For each pair (i, pi, t) and (j, pj , t)
of two GPS-logs where the distance between two nodes is
less than the maximum communicable range R, we check
if the corresponding communication log (i, j, pi, pj , t) exists
or not. If exists, for each cell ga,b on the line segment pi-
pj , we increase Fa,b by one. Otherwise we increase Ta,b by
one. Here, Ta,b is the count judging that ga,b is an obstacle
cell, and Fa,b is the one judging that it is a non-obstacle
cell. Fig. 7 shows an example of the communication-based
estimation procedure.

Based on Ta,b and Fa,b, we determine if ga,b is an obstacle
cell or not. Here, there is a possibility that Ta,b is increased
but ga,b is actually a non-obstacle cell. In opposite, there is
also a possibility that Fa,b is increased but ga,b is actually
an obstacle cell. Because GPS positions include errors and
radio propagation is uncertain, such incorrect decision may
happen. Therefore, we cannot rely only on those counters.

To cope with such ambiguity, our algorithm calculates the
probability that ga,b is an obstacle cell based on Bayesian
estimation. Bayesian estimation is a method to estimate the
event of a hypothesis from a given observed event. Here we

:obstacle:movable space :not decided
：communication  wassuccessful：communication was failed due to obstacles

Figure 7. Communication-based estimation procedure.

define A as the event that two nodes communicate with each
other over a cell, and B as the event that the cell is actually
an obstacle cell. Also, P (A) and P (B) are the probabilities
of events A and B, respectively. Therefore, P (B|A) is the
posterior probability that the cell is an obstacle cell after we
know that two nodes communicate over it. P (B|A) is given
by formula (1) according to the Bayesian theorem.

P (B|A) =
P (A|B)P (B)

P (A)

=
P (A|B)P (B)

P (A|B̄)P (B̄) + P (A|B)P (B)
(1)

We may assign 0.5 to the prior probability P (B) because
we cannot initially know whether or not each cell is an
obstacle cell. If we do so, formula (1) is reducted to formula
(2) knowing P (A|B̄) + P (A|B) = 1.

P (B|A) = 2P (A|B)P (B) (2)

From formula (2), the probability that a cell is an obstacle
cell is the prior probability multiplied by 2P (A|B) when
two nodes are regarded communicable over the cell.

In a similar way, we represent P (B|Ā), the posterior
probability that a cell is an obstacle when nodes are regarded
non-communicable over the cell by formula (3). Also the
probability that a cell is an obstacle cell is the prior proba-
bility multiplied by 2P (Ā|B) when two nodes are regarded
non-communicable over the cell.

P (B|Ā) =
P (Ā|B)P (B)

P (Ā)

=
P (Ā|B)P (B)

P (Ā|B̄)P (B̄) + P (Ā|B)P (B)
= 2P (Ā|B)P (B) (3)

By the fact that nodes communicate over a cell, the
probability that the cell is an obstacle cell is increased
by 2P (A|B). Similarly, by the fact that nodes do not
communicate over a cell, the probability that the cell is a
non-obstacle cell is increased by 2P (Ā|B). Based on this
idea, we define score pa,b given by formula (4) to determine
whether cell ga,b is an obstacle cell or not, using Ta,b and
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Fa,b. If pa,b is greater than a certain threshold, we determine
that ga,b is an obstacle cell (empirically, 0.8 is appropriate
to the threshold).

pa,b =
1
2
× (2P (A|B))Ta,b × (2P (Ā|B))Fa,b (4)

In the experiments in the following sections, we have
assigned 0.1 to P (A|B) from the preliminary experiment
in Section III-B because we can see that the probability that
two nodes communicate by diffraction is low when there is
an obstacle between them. Also, we assign 0.9 to P (Ā|B)
based on the results of received-rate in Section III-B. When
4.5 × Ta,b ≤ Fa,b holds, it is determined that ga,b is an
obstacle cell. We note that if both Ta,b and Fa,b are zero,
we do not make decision for ga,b.

C. Merging Maps and Refinement
Finally, we obtain a single map by merging two maps

from the above two procedures. The decision for ga,b is
done as follows.

• If ga,b is determined as an obstacle cell in both proce-
dures, ga,b is determined as an obstacle cell.

• If ga,b is determined as a non-obstacle cell in both
procedures, ga,b is determined as a non-obstacle cell.

• If ga,b is determined as a non-obstacle cell by either
one of the two procedures, ga,b is determined as a non-
obstacle cell.
One reason for this rule is that in the communication-
based estimation procedure, “non-obstacle” decision is
more credible than “obstacle” decision because all the
cells between two nodes that cannot communicate with
each other are determined as obstacle cells even though
most of them are actually non-obstacle ones. Another
reason is that in the GPS-based estimation procedure,
cells over which nodes do not transit are determined
as non-obstacle cells even though they are actually
obstacle cells.

• If decision is not made to ga,b in the communication-
based estimation procedure, we rely on the decision by
the GPS-based estimation procedure.

The obtained map is likely to be distorted as shown in
Fig. 2(d). If the forms of buildings are assumed to be close
to polygons, we may apply the final refinement procedure
called rectangular approximation. The procedure recognizes
a (small) set of cells that constitute a single obstacle, and
approximates its boundaries by lines.

We note that we can exploit existing maps or satellite
images, even though they cannot present the latest geography
nor detailed structure of buildings, to speedup the algorithm
execution and to enhance the accuracy of the results. For
example, considering the fact that building are obstacles even
if they have collapsed, we can pre-generate an obstacle map
based on a given map that tells us the presence of buildings,
and can apply our algorithm to estimate their change of
shape in details.

Figure 8. Obstacles in simulation. Figure 9. Picture of the region.

V. PERFORMANCE EVALUATION

We have evaluated the performance of our proposed algo-
rithm by simulations using the QualNet simulator [12] and
Wireless InSite module [13]. In order to test the performance
in such situation that radio is interrupted by obstacles like
buildings and the mobility of nodes is restricted, we use a
map shown in Fig. 8 that models 150m × 190m region on
our university campus (the picture of the region is shown
in Fig. 9). We assume that each mobile node moves along
a pathway and randomly chooses a new direction except
backward at each intersection, and the speed follows the
normal distribution with mean 1.5 m/s and variance 0.01.
In order to simulate the radio propagation accurately, we
have used the radio propagation model provided by Wireless
InSite assuming 2.4GHz RF. Also, we set its transmission
power to such a value that makes the maximum radio range
be Rmax according to the two-ray ground model [9]. We
note that in this simulator with the radio propagation model,
interference affected by multi-path signals are simulated.
Moreover, we assume that GPS errors follow the normal
distribution with mean µ and variance 1. The size of a cell
was set to 1m×1m, and the maximum communicable range
R was equal to Rmax. We set P (A|B), the probability that a
cell is an obstacle cell when two nodes communicated over
the cell, to 0.1. Also P (Ā|B), the probability that a cell is
a non-obstacle cell when two nodes communicated over the
cell, was set to 0.9 based on the preliminary experiments
in Section III-B. The other parameter settings are shown in
Table II (the default values are emphasized by bold font).

In the above settings, we have generated a local map using
the GPS logs and communication logs during 600 seconds,
and evaluated the ratio of cells estimated correctly to the
entire cells. This ratio is denoted by Hit and defined as
follows;

Hit =
1

mn

m∑
a=1

n∑
b=1

hit(ga,b)

where m is the number of cells in row and n is that in
column. hit(ga,b) returns 1 if ga,b is estimated correctly,
and returns 0 otherwise.
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Table II
SIMULATION SETTING

maximum radio range (Rmax) 25 ,50, 75 (m)
number of mobile nodes 15, 30 ,45
beacon message transmission frequency (Tc) 1.0, 5.0, 10.0 (s)
GPS positioning frequency (Tp) 1.0, 5.0, 10.0 (s)
average position error (µ) 0, 5.0, 10.0 (m)

(a) Rmax = 25 (b) Rmax = 50 (c) Rmax = 75

Figure 10. Generated maps under different Rmax values.

A. Impact of Parameters on Estimation Accuracy

We have evaluated the impact of several factors on esti-
mation accuracy. We have varied one of parameters in Table
II, and set the other parameters to the default values.

1) Maximum communicable range: We have observed
Hit under different transmission powers such that Rmax

in ideal environment was 25m, 50m or 75m. Fig. 10 shows
the generated maps, and Fig. 11 shows Hit. We can see that
the estimation accuracy is better as the range is shorter. This
is because our algorithm regards all the cells over the line
segment between two nodes that are closer than Rmax as
obstacle cells if they cannot communicate with each other.
The number of incorrect cells with short radio range is
smaller than that with long radio range.

2) Number of mobile nodes: Then we have varied the
number of nodes. Fig. 12 shows the result when the number
of nodes was set to 15, 30 or 45. We can see that, with
the larger number of nodes, Hit is larger and converges
quickly. This is simply because we can get more GPS logs
and communication logs.

3) Beacon message frequency: We have varied the bea-
con message frequency denoted by Tc. It was set to 1, 5
or 10 seconds. The result is shown in Fig. 14. We can see
that the larger frequency results in smaller Hit due to less
amount of information about communication. However, Hit
is larger than 0.8 even in case that frequency Tc is 10.

4) Average position error: GPS errors will greatly af-
fect the accuracy since it affects both the GPS-based and
communication-based estimation procedures. We have set
the average of position errors to 0, 5 or 10m and measured
Hit. Fig. 13 shows the generated maps, and Fig. 15 shows
the corresponding values of Hit. It is natural that the value
of Hit under a smaller position error is better. However,
even in case of 10m, we can obtain a readable map and this
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Figure 11. Impact of Rmax on Hit.
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(a) µ = 0m (b) µ = 10m

Figure 13. Generated maps under different position errors.

can further be improved by applying the image processing
techniques (like Closing) several times more.

5) GPS positioning frequency: We have also evaluated
Hit varying the GPS positioning frequency Tp. It was set
to 1, 5 or 10 seconds. From Fig. 16, the GPS positioning
frequency has little effect on estimation accuracy since
we conducted linear interpolation of trajectory when the
frequency was long.

B. Effect of each estimation procedure

In this section, we have evaluated effects of the GPS-
based and communication-based estimation procedures. We
have compared the three maps obtained by the GPS-based
estimation procedure, by the communication-based estima-
tion procedure, and by both procedures (the final product
of our algorithm). We have used the same setting as the
previous experiment.

From Fig. 17, we can see that the final map is the
most accurate. The estimation accuracy of the GPS-based
one is monotonically increasing, but it is not sufficient for
practical use. Similarly, that of the communication-based
one is increasing, but it does not reach the final result. This
indicates the necessity of both procedures, and combination
of the results from them yields good results.

C. Discussion on Communication Logs

In this section, we discuss the amount of communication
logs to achieve enough accuracy. We revisit the result in
Fig. 11. In all the cases of Rmax, estimation accuracy is
convergent when we use communication logs for more than
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Figure 17. Performance of each procedure.

300 sec., which corresponds to 4,000 communication logs.
In order to evaluate the time to obtain 4,000 communication
logs, we have conducted simulation varying the number of
nodes (15, 30 and 45). The other parameters are set to the
values in Table II. When we have 15, 30 and 45 nodes, it
took 352 sec., 143 sec. and 94 sec., respectively, to obtain
more than 4,000 communication logs. From the results, our
algorithm can generate a local map with 85% accuracy only
assuming 15 members’ GPS logs and communication logs
for 350 seconds. Therefore we can say that our method is
realistic and useful because our algorithm is applicable to
disaster cases or others.

VI. PERFORMANCE EVALUATION IN REAL
ENVIRONMENT

In order to evaluate the performance in real environment,
we have conducted the experiment in 150m × 190m region
on Osaka University campus shown in Fig. 9. We let each
person (mobile node) have Jennic JN5139 [8] (IEEE802.15.4
module) and IO-DATA USBGPS22 [14] (GPS receiver).
Each person moved along a pathway and randomly chose a
direction (except backward) at each intersection. The moving
speed was about 1.5 m/s. It also sent beacon messages and
measured the positions by GPS every second (Tc = Tp = 1
sec.) with the transmission power −18dBm. In our algo-
rithm, the maximum communicable range Rmax is about
50m. For the other parameters, we have used the same
setting as the simulation experiments in Section V. The size
of a cell was set to 1m × 1m, P (A|B) was set to 0.1, and
P (Ā|B) was set to 0.9. We have collected GPS logs and
communication logs of ten persons for 600 seconds, and

(a) using native GPS
logs (Hit=0.77).

(b) using corrected GPS
logs (Hit = 0.86).

Figure 18. Generated maps

Table III
ANALYSIS OF COMMUNICATINO LOGS.

hhhhhhhhhhhreal experiment
simulation success failure

success 91.1 (%) 6.4 (%)
failure 8.8 (%) 93.6 (%)

evaluated Hit, the ratio of the cells estimated correctly to
the entire cells.

Fig. 18(a) illustrates the map generated by our algorithm
using native GPS positions. Also, Hit is 0.77, which is much
lower than the result from the simulation (about 0.9).

To see the problem, we have compared the communication
logs in real environment and in simulation. Table III shows
the ratio of correspondence of success/failure of communica-
tions in simulation and in real environment. “failure” means
that communication between two nodes was failed even
though they were closer than distance Rmax, and otherwise
it is regarded as “success”. From Table III, we can see that
more than 90 % logs were identical, which seems a good
result.

Therefore, we have analyzed the GPS logs. The “native
GPS” values in Table IV show the distribution of the
measured GPS position errors. From the result, we can say
that some GPS logs contain large errors (more than 50m),
which may impact on estimation accuracy seriously. This is
because some nodes cannot receive GPS signal accurately
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Table IV
ANALYSIS OF GPS LOGS

position error (m) native GPS corrected GPS
0 - 5 m 4742 4853

5 - 10 m 1996 2191
10 - 15 m 948 1106
15 - 20 m 605 627
20 - 25 m 361 201
25 - 30 m 150 7
30 - 35 m 82 0
35 - 40 m 49 0
40 - 45 m 6 0
45 - 50 m 1 0

50 - m 45 0

due to buildings. Then we try to eliminate such large position
errors considering their prior and posterior positions. We
correct them so that they are on the lines between their
prior and posterior positions. The distribution of position
errors is shown as “corrected GPS” of Table IV. We can see
that position errors of GPS logs are improved (the average
position error is 6.33m). Also, we generate a local map using
the modified GPS logs, and evaluate estimation accuracy
of the map. The generated map using this corrected GPS
logs is shown in Fig. 18(b), which has similar Hit value
(0.86) with the simulation experiment. From these results, it
is concluded that accurate position information is important,
and it can be obtained by simple filtering that eliminates
outliers.

In our algorithm, we assume that nodes can measure their
current positions using GPS recievers, but GPS may not
work in such a place where many buildings interrupt signals
from satellites. In order to solve this problem, we may use
range-free localization that only uses wireless connectivity
information (for example, see Ref. [15]).

VII. CONCLUSION

We have proposed an algorithm to estimate the shapes
and positions of obstacles using mobile nodes’ ad hoc
communication devices and GPS receivers. Our proposed
algorithm estimates movable space and obstacles using GPS
logs and communication logs, and refines the result by
applying some image processing procedures to obtain a
readable map. Through several experiments in simulations
and real environment, we have shown that our algorithm
could generate readable and accurate maps.

As we stated in Section I, medical doctors and rescue
workers say that geography information is very important
in rescue and treatment actions in emergency situation.
Therefore, in our ongoing project [2], we are trying to
incorporate this algorithm into our “electronic triage system”
for instant and automated generation of local maps. We
will also conduct more experiments in real environments to
assess the scalability and availability of our algorithm. This
is part of our ongoing work.
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