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a b s t r a c t

Large accidents and disasters in crowded regions such as business districts and universities
may create a large number of patients, and first responders need to recognize the presence
and location of buildings for their efficient rescue operations. In this paper, we propose
an algorithm to estimate the two-dimensional (2D) shapes and positions of buildings,
simultaneously using GPS logs and wireless communication logs of mobile nodes. The
algorithm is easy to implement since it only needs general wireless devices such as
smartphones. The results from the experiments conducted assuming rescue operation
scenarios have shown that the proposed method could quickly generate a map with 85%
accuracy.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Situation awareness is the basis of ubiquitous society. We try to sense or capture physical phenomena such as change of
temperature and rain, or try to recognize and analyze the forms, locations and behavior of the real world’s objects (such as
vehicles and pedestrians) and landscape. We have learned that such situation awareness is also very significant for rescue
operations in cases whenmany people are injured suddenly by a large accident or a disaster in small and condensed regions.
For example, in Japan, we experienced a very tragic train accident in 2005 in which over 100 people died and about 460
people were injured. It has been reported that rescue teams need to recognize the positions and condition of patients for
efficient rescue operations in such a situation [1]. We have started to design and develop an electronic ‘‘triage’’ system.
It continuously senses the vital signs of the patients and estimates their locations by IEEE802.15.4-based wireless sensor
networks. We are leading this national project, involving five organizations with several medical doctors and professors in
an emergency care department [2].

These doctors say that fast recognition of obstacles such as buildings in the region will be very helpful for rescue
operations and treatment actions. It is desirable to generate a localmap of the site,which tells us building and street structure
information in a city section, the presence of warehouses in a factory, or complicatedly connected small buildings on a
university campus. However, such a local and thus detailed map cannot often be obtained from a public map, especially if
the region is private property, and even pathways (or streets) may be changed after a disaster. Using digital images of the
landscape or range information from radar sensors is a possibility to build a map, but dedicated effort (i.e., taking pictures
or measuring ranges at specific points toward specific directions) to obtain such information is required. This encumbers
efficient rescue operations since doctors and rescue teams always need manpower for treatment actions. Thus automated
acquisition of a local map without dedicated hardware is mandatory in such emergency situation.

In this paper, we propose a local map estimation algorithm for the recognition of an accident site in an emergency
situation. We assume that each member in the rescue teams, called a mobile node, is equipped with a GPS receiver and
a mid-range communication device such as IEEE802.11 or IEEE802.15.4 that can directly communicate with others several
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Fig. 1. Environment for proposed algorithm.

tens of meters away. Since such equipment is very general, the algorithm does not require dedicated devices. The algorithm
estimates movable areas and obstacles using position information from GPS receivers and communication logs among
mobile nodes. In more detail, it identifies the trajectories of mobile nodes from GPS logs in order to estimate pathways, and
simultaneously estimates the presence of objects from the communication logs among mobile nodes in order to estimate
obstacles. These results are finally merged to output an estimated entire map.

Our aim is to clarify the challenges in this automated generation of local maps and provide an efficient and reasonable
approach.We need to take into account that GPS errors and uncertainty of radio propagationwith presence of obstaclesmay
have a negative effect on themap accuracy. To copewith this problem, we conducted several preliminary field experiments.
Based on the results, we take an approach to using probabilities and counters to determine whether each subregion is
occupied by an obstacle or not. After estimating the rough form of the obstacles, image-processing techniques are applied
to improve the readability of themap. Two field experiments and several simulation experimentswere conducted to validate
the effectiveness of the algorithm. In particular, in the field experiments, we estimated the map of a 150 m × 190 m region
on our university campus and that of a 225 m × 250 m region with many apartment buildings. The results from those
experiments have shown that maps with about 85% accuracy were generated within a few hundred seconds.

Compared with our preliminary work that was presented in [3], this paper has considerable extensions along with new
experimental results. They are summarized as follows. (i) We have conducted additional simulations and field experiments.
In particular, a new field experiment was conducted in a region with many buildings. From the experimental results, we
have confirmed that our method could recognize all the buildings and pathways with sufficient accuracy. These results are
presented in Sections 4 and 5. (ii) We have designed several extensions to the basic algorithm to enhance its capability.
First, we have implemented a function to enable combined use of existing and generated maps that facilitates situation
recognition. Second, we have addressed our ideas to deal with plausible and realistic situations that had not been considered
in the basic algorithm. The details of the extensions are explained in Section 6. (iii) In order to motivate our work, we
introduce a known map estimation technique called SLAM that simultaneously estimates the location and map of mobile
robots. Then we explain the difficulty of applying SLAM to our case. This is introduced in Section 7.

The rest of this paper is organized as follows. Section 2 outlines the problem and design of the proposed algorithm, and
Section 3 gives the algorithm description. Section 4 explains the simulation results, which are followed by the results from
the two field experiments in Section 5. In Section 6, we give discussions on the design of possible algorithm extensions.
Section 7 summarizes the related work and addresses the contribution of this paper. Finally we conclude this paper in
Section 8.

2. Problem statement and algorithm design

2.1. Problem statement

In Fig. 1, we exemplify the environment in which our proposed algorithm works. A targeted region consists of movable
space such as pathways, and obstacles such as buildings.We assume that amobile node (or simply a node) is a personwho has
a wireless terminal and can move only in movable space. Each node has a GPS receiver and measures its current position
every Tp seconds. This position information contains some error range, which is unknown in the algorithm. It also has a
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Fig. 2. Algorithm outline.

mid-range communication device such as IEEE802.11 and IEEE802.15.4. It transmits a beacon message that contains the
measured position every Tc seconds. We assume that each node roughly knows the global time, which is easily obtained
through the GPS device.

Every time node i measures its position, it records (i, pi, t), where pi and t are the measured position and time,
respectively. This is called a GPS log. In addition, when node j receives a beacon message from node i that contains pi, node j
records (i, j, pi, pj, t), where t denotes the reception time of this message (global time) and pj is the latest measured position
of node j. This is called a communication log. Both the GPS logs and communication logs collected by mobile nodes are sent
to a single server. We assume that the delivery of those logs is done in various ways; for example, mobile nodes can send
them when they meet base stations or by multi-hop transmission over other nodes. On the server, the proposed algorithm
estimates the shapes and positions of obstacles.

The problem treated in this paper is to estimate the movable space and obstacles in a targeted area as accurately as
possible using all the GPS logs and communication logs.

2.2. Map generation—challenges and approaches

We provide a centralized algorithm. The outline of our algorithm is shown by the producedmaps in Fig. 2. The algorithm
consists of two independent map estimation procedures: (i) estimation of movable space by GPS logs (called the GPS-based
estimation procedure; map (a) of Fig. 2) and (ii) estimation of obstacles by communication logs (called the communication-
based estimation procedure; map (c) of Fig. 2). After applying the GPS-based estimation procedure, an image-processing
technique called closing is applied (map (b)). Finally, the two maps (b) and (c) are merged into a single map (d), and finally
refined by an original image-processing technique called rectangular approximation (map (e)).

In the following, we state the design consideration of the two procedures, addressing the challenges we face in the
problem.

2.2.1. GPS-based estimation procedure
Mobile nodesmove inmovable space. Therefore, for eachGPS log (i, pi, t), position pi is in themovable space if pi contains

no error. In addition, for two time-subsequent logs (i, pi, t) and (i, p′

i, t + Tp), the estimated trajectory between pi and p′

i is
also in the movable space. Here, since the positions may contain errors, a simplistic decision may fail to precisely estimate
the movable space. Our approach is a counter-based one in which for each small grid cell in the region we count howmany
times the cell ismarked as ‘‘movable space’’. Since GPS errors can be considered quasi-randomones in terms of time, location
and nodes, the cells in real movable space will possibly have larger counts. Therefore, this straightforward idea alleviates
GPS measurement errors.

2.2.2. Communication-based estimation procedure
Oneplausible approach is to use the received signal strength (RSS) information.Wemayderive the expectedRSS (denoted

as rx) from a known radio propagation model assuming there is no obstacle between pi and pj. Then we compare the
measured RSS rxwith the expected RSS rx, and see howmuch rx deviates from rx. Based on this deviation, we may estimate
the existence of obstacles between pi and pj. However, several factors such as multi-path signals or radio signals from
other sources may interfere with radio propagation and may fluctuate the RSS values. For example, Wireless LAN interferes
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Fig. 3. Expected and measured RSS (versus distance).

Fig. 4. Measured packet error rate (versus distance).

with 2.4 GHz radio frequency. Human bodies and humidity may also reduce the signal power. In order to observe such
phenomena, we conducted a simple field experiment.We used ZigBeemodules JN5139 [4] (Jennic Ltd.). The experimentwas
done in open space without any obstacle, and two ZigBeemodules were set 1m above the ground. Onemodule transmitted
a 26 byte packet every 1 s with transmission power 0 dBm, and in total 10 packets were transmitted for each distance.
Fig. 3 shows the expected andmeasured RSS values versus the two nodes’ distance. To derive the expected RSS, we assumed
2.4 GHz frequency, and used the two-ray ground model with λ = 0.125 m and γ = −1 and the free-space model [5]. This
graph shows that the measured RSS values fluctuated even in the same distance case, and do not fit for the models even
in this stationary environment. [6] has also shown that the errors of RSS-based ranging measurements are of non-Gaussian
distribution in nature. Therefore we can easily conclude that they are not applicable to such a situation that we assume.

Since the RSS is too sensitive, we consider using packet reception ratios. For two nodes that have shorter distance than
the expectedmaximum communicable range (denoted by R), we can estimate the presence of obstacles between two nodes
based on the following intuitive rules: (1) if node j could receive a beaconmessage from node i, there is no obstacle between
pi and pj, and (2) if the distance between pi and pj was less than R and node j could not receive a beacon message from node
i, there is an obstacle between pi and pj. However, interference also affects the packet reception ratio as in the case of the
RSS. For example, a packet is not delivered even if there is no obstacle between pi and pj and the distance between them is
less than R. Another concern is radio diffraction. A packet is delivered even if there is an obstacle between pi and pj.

In order to see to what extent such phenomena happen, we also measured the packet reception ratio in the previous
experiment of Fig. 3. The result is shown in Fig. 4. In an ideal environment, the packet reception ratio in this graph should
be 100%, but actually around 10% is lost, for various reasons. Also, to see the effect of diffraction, we used Jennic JN5139
(2.4 GHz) modules as in the previous experiment. As shown in Fig. 5, we used two JN5139 modules. The sender was either
located at point 1 or 2, and it transmitted 10,000 packets of 26 bytes with −18 dBm. The receiver was located at one of
points 3–10, and it counted the received packets. We note that the RSS threshold of a JN5139 module was −96 dBm. The
expected RSS was derived using the knife-edge diffraction model [7]. Table 1 shows the expected RSS values and packet
reception ratio. From the results, in any case that the line of sight is blocked by the obstacle, the packet loss ratio was large
and diffraction merely occurred. The model indicates that in 2.4 GHz RF, the expected RSS was around −95 dBm, which
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Table 1
RSS calculated by knife-edge diffraction model.

Sender Receiver
3 4 5 6 7 8 9 10

1 Packet reception ratio (%) 0 0 0 93.3 0 0 0 90.7
RSS by diffraction model (dBm) −108.7 −104.9 −99.2 −90.6 −112.7 −109.0 −103.1 −93.1

2 Packet reception ratio (%) 0 13.7 59.8 94.4 0 0 0 91.7
RSS by diffraction model (dBm) −103.7 −100.7 −94.7 −87.0 −108.3 −104.6 −99.0 −90.6

Fig. 5. Diffraction propagation.

is almost the RSS threshold. Since in most cases the measured RSS was smaller than the expected one, packet delivery by
diffraction is not likely to occur. Consequently, we can take a simple approach to using the packet reception instead of RSS,
but we still need to take into account that GPS errors and unexpected loss of packets may obscure the decision. For this, we
introduce a probability to represent the degree of likelihood that the packet delivery is done as expected. Also, to increase
the confidence, we introduce counters as in the movable space estimation procedure.

In the following section, we give the details of the algorithm.

3. Algorithm description

The algorithm divides a targeted area into m × n square cells, and estimates for each cell whether it is occupied by
an obstacle or not. Hereafter, a cell occupied by an obstacle is called an obstacle cell and one in movable space is called a
non-obstacle cell. A cell at row a and column b is denoted by ga,b (1 ≤ a ≤ m and 1 ≤ b ≤ n).

3.1. GPS-based estimation procedure

In the GPS-based estimation procedure, for each GPS log (i, pi, t), we find the cell containing pi. In addition, for two
subsequent GPS logs (i, pi, t) and (i, p′

i, t + Tp), we find the cells on the line segment between pi and p′

i .
Here, we denote each of such cells by c. c might be likely to be a non-obstacle cell, but this should not be the final decision

due to ambiguity from GPS errors. Hence, we determine that c is a non-obstacle cell only if mobile nodes transit over cell c
more than h times, where h is the average number of mobile node transits over the cell. Here, we explain how to determine
the value of h. We let N , T and V denote the number of mobile nodes, the time length during which logs are collected, and
the average speed (m/s) of mobile nodes, respectively. Also, the area is x× y (m2) and the side length of a cell is denoted by
g (m). Since the expected time for a mobile node to transit from a cell to its neighboring cell is g/V (s), the expected number
of cells all the nodes transit during time T is TVN/g . Also, since the number of cells in the targeted area is xy/g2, the average
number of mobile node transits per cell is derived by h = gTVN/xy.

Finally, to prevent non-obstacle cells, over which few nodes transit, from being determined as obstacle cells, we apply
the closing process, which is known as an image-processing technique [8]. Closing is used to reveal thin-line characters and
lines in figures, and consists of two steps: dilation and erosion of white pixels. In the proposed algorithm, we regard obstacle
cells as black pixels, and non-obstacle cells as white pixels. In the dilation step, each black pixel is changed to a white pixel
if it has more than five white pixels as its adjacent cells. In the erosion step, each white pixel is changed to a black pixel if it
has fewer than four black pixels as its adjacent cells. We apply the dilation k times, and after that apply the erosion k times
(empirically k = 3 produces good results). Figs. 6 and 7 show examples of GPS-based estimation and closing, respectively.

3.2. Communication-based estimation procedure

In the communication-based estimation procedure, for each cell ga,b, we prepare two integer counters Ta,b and Fa,b
initialized by zero. For each pair (i, pi, t) and (j, pj, t) of two GPS logs where the distance between two nodes is less than the
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Fig. 6. GPS-based estimation procedure.

dilation erosion

Fig. 7. Closing technique.

communication was
successful

communication was
failed due to obstacles

obstacle

movable space

not decided

Fig. 8. Communication-based estimation procedure.

expected maximum communicable range R, we check if the corresponding communication log (i, j, pi, pj, t) exists or not. If
it exists, then for each cell ga,b on the line segment pi − pj we increase Fa,b by one. Otherwise, we increase Ta,b by one. Here,
Ta,b is the count judging that ga,b is an obstacle cell, and Fa,b is the one judging that it is a non-obstacle cell. Fig. 8 shows an
example of the communication-based estimation procedure.

Based on Ta,b and Fa,b, we determine if ga,b is an obstacle cell or not. Here, there is a possibility that Ta,b is increased but ga,b
is actually a non-obstacle cell. In contrast, there is also a possibility that Fa,b is increased but ga,b is actually an obstacle cell.
Because GPS positions include errors and radio propagation is uncertain, such incorrect decisions may happen. Therefore,
we cannot rely only on those counters.

To cope with such ambiguity, the proposed algorithm calculates the score to determine whether or not ga,b is an obstacle
cell based on Bayesian estimation. Bayesian estimation is a method to estimate the event of a hypothesis from a given
observed event. Here we define A as the event that two nodes communicate with each other over a cell, and B as the event
that the cell is actually an obstacle cell. Also, P(A) and P(B) are the probabilities of events A and B, respectively. Therefore,
P(B|A) is the posterior probability that the cell is an obstacle cell after we know that two nodes communicate over it. P(B|A)
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is given by formula (1) according to the Bayesian theorem.

P(B|A) =
P(A|B)P(B)

P(A)
. (1)

Wemay assign 0.5 to the prior probability P(A) becausewe cannot initially knowwhether or not two nodes communicate
over the cell. If we do so, formula (1) is reduced to formula (2).

P(B|A) = 2P(A|B)P(B). (2)
From formula (2), the probability that a cell is an obstacle cell is the prior probability multiplied by 2P(A|B)when two nodes
are regarded as communicable over the cell.

In a similar way, we represent P(B|Ā), the posterior probability that a cell is an obstacle when nodes are regarded non-
communicable over the cell, by formula (3). Also, if we assign 0.5 to the prior probability P(A), the probability that a cell is
an obstacle cell is the prior probability multiplied by 2P(Ā|B) when two nodes are regarded as non-communicable over the
cell.

P(B|Ā) =
P(Ā|B)P(B)

P(Ā)
(3)

P(B|Ā) = 2P(Ā|B)P(B). (4)
By the fact that nodes communicate over a cell, the probability that the cell is an obstacle cell is increased by 2P(A|B).

Similarly, by the fact that nodes do not communicate over a cell, the probability that the cell is a non-obstacle cell is increased
by 2P(Ā|B). Based on this idea, we define the score pa,b given by formula (5) to determine whether cell ga,b is an obstacle cell
or not, using Ta,b and Fa,b assuming that the initial value of P(B) is 0.5. If pa,b is greater than a certain threshold, we determine
that ga,b is an obstacle cell (empirically, 0.8 is appropriate for the threshold).

pa,b =
1
2

× (2P(A|B))Ta,b × (2P(Ā|B))Fa,b . (5)

In the experiments described in the following sections, we assign 0.1 to P(A|B) from the preliminary experiment in
Section 2.2 because we can see that the probability that two nodes communicate by diffraction is low when there is an
obstacle between them. Also, we assign 0.9 to P(Ā|B) based on the results of the packet reception rate in Section 2.2. When
4.5 × Ta,b ≤ Fa,b holds, it is determined that ga,b is an obstacle cell. We note that if both Ta,b and Fa,b are zero, we do not
make a decision for ga,b.

3.3. Merging maps and refinement

Finally, we obtain a single map by merging two maps from the above two procedures. The decision for ga,b is done as
follows.
• If ga,b is determined as an obstacle cell in both procedures, ga,b is determined as an obstacle cell.
• If ga,b is determined as a non-obstacle cell in both procedures, ga,b is determined as a non-obstacle cell.
• If ga,b is determined as a non-obstacle cell by either one of the two procedures, ga,b is determined as a non-obstacle cell.

One reason for this rule is that, in the communication-based estimation procedure, the ‘‘non-obstacle’’ decision is more
credible than the ‘‘obstacle’’ decision because all the cells between two nodes that cannot communicate with each other
are determined as obstacle cells even though most of them are actually non-obstacle ones. Another reason is that, in the
GPS-based estimation procedure, cells over which nodes do not transit are determined as non-obstacle cells even though
they are actually obstacle cells.

• If a decision is not made for ga,b in the communication-based estimation procedure, we rely on the decision by the
GPS-based estimation procedure.

The obtained map is likely to be distorted, as shown in Fig. 2(d). However, the general forms of buildings are close to
polygons. In such cases, we may apply the final refinement procedure called rectangular approximation. The procedure
recognizes a (small) set of cells that constitute a single obstacle by comparing the decision of each cell with those of
neighboring cells, and approximates its boundaries by lines. By applying rectangular approximation, we can derive more
readable maps, as shown in Fig. 2(e).

4. Simulation experiments

We evaluated the performance of the proposed algorithm by simulations using the QualNet simulator [9] and Wireless
InSite module [10] that can accurately simulate radio propagation based on several models. In order to test the performance
in such situations that radio propagation is interrupted by obstacles such as buildings and themobility of nodes is restricted,
we used a map shown in Fig. 9 that models a 150 m × 190 m region on our university campus (a picture of the region is
shown in Fig. 10). We assume that each mobile node moves along a pathway and randomly chooses a new direction except
backward at each intersection, and the speed follows a normal distribution with mean 1.5 m/s and variance 0.01. In order
to simulate the radio propagation accurately, we used the radio propagation model provided by Wireless InSite, assuming
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Table 2
Simulation settings.

Maximum radio range (Rmax) 25, 50, 75 (m)
Number of mobile nodes 15, 30, 45
Beacon message transmission frequency (Tc ) 1.0, 5.0, 10.0 (s)
GPS positioning frequency (Tp) 1.0, 5.0, 10.0 (s)
Average position error (µ) 0, 5.0, 10.0 (m)

Fig. 9. Target map in simulation.

Fig. 10. Air photograph of target map.

2.4 GHz RF. Also, we set its transmission power to such a value that makes the maximum radio range be Rmax according to
the two-ray ground model [5]. We note that in this simulator with the radio propagation model, interference affected by
multi-path signals is simulated. Moreover, we assume that the GPS errors follow a normal distribution with mean µ and
variance 1. The size of a cell g was set to 1m, and the expectedmaximum communicable range of our algorithm Rwas equal
to Rmax. The other parameter settings are shown in Table 2 (the default values are emphasized by bold font).

With the above settings, we generated a local map using the GPS logs and communication logs during a period of 600 s,
and evaluated the ratio of cells estimated correctly to the entire cells. This ratio is denoted by Hit and is defined as follows:

Hit =
1
mn

m−
a=1

n−
b=1

hit(ga,b),
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(a) Rmax = 25. (b) Rmax = 50. (c) Rmax = 75.

Fig. 11. Generated maps under different Rmax values.

Fig. 12. Impact of Rmax on Hit .

where m is the number of cells in the row and n is the number of cells in the column. hit(ga,b) returns 1 if ga,b is estimated
correctly, and returns 0 otherwise.

4.1. Impact of parameters on estimation accuracy

We evaluated the impact of several factors on the estimation accuracy. We varied one of the parameters given in Table 2,
and set the others to the default values.

4.1.1. Maximum radio range
We observed Hit under different transmission powers such that Rmax in an ideal environment was 25 m, 50 m or 75 m.

Fig. 11 shows the generated maps, and Fig. 12 shows Hit . We can see that the estimation accuracy is better as the range is
shorter. This is because our algorithm regards all the cells over the line segment between two nodes that are closer than R as
obstacle cells if they cannot communicate with each other. The number of incorrect cells with short radio range is smaller
than that with long radio range.

4.1.2. Number of mobile nodes
We varied the number of nodes. Fig. 13 shows the result when the number of nodes was set to 15, 30 or 45. We can see

that, with the larger number of nodes, Hit is larger and it converges quickly. This is simply because we can get more GPS
logs and communication logs.

4.1.3. Beacon message interval
We varied the beacon message interval, which is denoted by Tc . It was set to 1, 5 or 10 s. The result is shown in Fig. 14.

We can see that a longer interval results in a smaller Hit value due to fewer communication logs. However, Hit is still larger
than 0.8 with the longest interval Tc = 10.

4.1.4. Average position error
GPS errors are expected to greatly affect both GPS-based and communication-based estimation procedures since these

procedures rely on position information from the GPS system. We set the average position error to 0 m, 5 m or 10 m, and
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Fig. 13. Impact of the number of nodes on Hit .

Fig. 14. Impact of beacon message frequency Tc .

(a) µ = 0 m. (b) µ = 10 m.

Fig. 15. Generated maps under different position errors.

measured Hit . Fig. 15 shows the generated maps, and Fig. 16 shows the corresponding values of Hit . It is natural that the
value of Hit under a smaller position error is better. However, even in the case of 10 m, we can obtain a readable map, and
this can further be improved by additionally applying image-processing techniques (e.g., closing).

4.1.5. GPS positioning frequency
We also evaluated Hit on varying the GPS positioning frequency, denoted by Tp. It was set to 1, 5 or 10 s. From Fig. 17,

the GPS positioning frequency has little effect on the estimation accuracy. This is because we adopt a linear interpolation
technique between subsequent positions, and trajectories can be derived with low frequency.

4.2. Individual evaluation of the two estimation procedures

In this section, we evaluate the GPS-based and communication-based estimation procedures individually. We compared
the three maps obtained by the GPS-based estimation procedure, by the communication-based estimation procedure, and
by both procedures (the final product of the proposed algorithm). We set the parameters to the default values in Table 2.
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Fig. 16. Impact of average position error µ.

Fig. 17. Impact of GPS positioning frequency Tp .

Fig. 18. Performance of each procedure.

From Fig. 18, we can see that the final map is the most accurate. The estimation accuracy of the GPS-based one is
monotonically increasing, but it is not sufficient for practical use. Similarly, that of the communication-based one is also
increasing, but it does not reach the final result. This clearly shows the necessity and effectiveness of the combined use of
the two procedures.

4.3. Stationary nodes

All nodes were mobile in the above simulations. However, considering disaster-relief scenarios, the co-presence of
stationary nodes (such as patients) with highly mobile nodes (such as first responders) should be considered. Therefore,
we evaluated Hit under a scenario with mobile and stationary nodes. From Fig. 19, in the case of ‘‘all-mobile’’ nodes, Hit is
larger and convergesmore quickly than in the case of ‘‘half-mobile–half-stationary’’ nodes, becausewe can obtainmore GPS
logs in the former case. However, Hit is about 0.9 in both cases.
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Fig. 19. Impact of static nodes.

Table 3
Analysis of communication logs.

Real experiment Simulation
Success (%) Failure (%)

Success 91.1 6.4
Failure 8.8 93.6

Table 4
Analysis of GPS logs.

Position error (m) Native GPS Corrected GPS

0–5 4742 4853
5–10 1996 2191

10–15 948 1106
15–20 605 627
20–25 361 201
25–30 150 7
30–35 82 0
35–40 49 0
40–45 6 0
45–50 1 0
50 45 0

5. Field experiments

We conducted two field experiments to evaluate the performance of our method in a real environment. One experiment
was conducted to observe the performance difference between real and simulated environments. To this goal, we conducted
the field experiment in the same situation as the simulation scenario of Section 4, where a part of our university campus
was targeted. Another experiment was conducted to verify the algorithm performance in regions with many buildings.

5.1. Experiment on university campus

5.1.1. Log collection and analysis
We collected GPS logs and communication logs of ten persons for 600 s in a 150 m × 190 m region on Osaka University

campus, shown in Fig. 10. We let each person (mobile node) have a Jennic JN5139 module [4] (IEEE802.15.4 module) and
an I-O DATA USBGPS22 receiver [11] (GPS receiver). Each person moved along a pathway and randomly chose a direction
(except backward) at each intersection. Themoving speedwas about 1.5m/s. Every second, the position wasmeasured and
a beacon message was sent (Tc = Tp = 1 s). The transmission power was −18 dBm, and the maximum radio range Rmax
was about 50 m according to the two-ray ground model [5].

First, we compared the communication logs in the real environment with those in the simulation. Table 3 shows
the success/failure ratio of communications in the simulation and in the real environment: ‘‘failure’’ means that the
communication between two nodes failed even though they were closer than distance Rmax; otherwise the communication
is regarded as a ‘‘success’’. From Table 3, we can see that more than 90% of the results match.

Second, we analyzed the GPS logs collected in the real environment. The ‘‘native GPS’’ column of Table 4 shows the
distribution of the GPS position errors. We can see that some GPS logs contain large errors (more than 50 m), since the GPS
signals were sometimes blocked by buildings. Such large errors may have a serious impact on the estimation accuracy.
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(a) Using corrected GPS logs
(Hit = 0.86).

(b) Using native GPS logs
(Hit = 0.77).

Fig. 20. Generated maps.

Fig. 21. Target map in the large area.

Hence,we try to eliminate such large position errors by considering their prior and posterior positions. For eachmeasured
position, if it is an ‘‘outlier’’ that deviates from the line segment between its prior and posterior positions, we modify the
position to themidpoint of the line segment. The error distribution of the corrected GPS logs is shown in the column headed
‘‘Corrected GPS’’ in Table 4. We can see that position errors of the GPS logs are mitigated and the average position error is
6.33 m in this case.

5.1.2. Experimental results
Using the communication logs and the corrected GPS logs of the previous section, we evaluated Hit , the ratio of the

correctly estimated cells to the entire cells. The generated map using this corrected GPS logs is shown in Fig. 20(a), which
has similar Hit value (0.86) to that of the simulation experiment (0.89). From these results, we can say that our algorithm
can be used in a real environment.

For comparison purposes, we measured Hit using the native GPS logs. Fig. 20(b) illustrates the generated map where Hit
is 0.77. It is much lower than that with the collected GPS logs. Obviously accurate position information is significant, but a
GPS system can be used for this purpose by simply filtering outliers.

5.2. Experiment in a region with apartment buildings

Another experiment was conducted in a 225 m × 250 m region (Fig. 21) with several apartment buildings. We collected
GPS logs in this region every second using a Sony nav-u [12]. Here we recall that, from the experimental result of
Section 5.1.2 (Table 3), 90% of the collected communication logs have the same successful ratio as those of the simulations.
Therefore, using the map shown in Fig. 22 that models the target region, we used Qualnet and Wireless InSite to collect the
communication logs. The simulation settings are the same as those in Section 4 and logs were collected for 600 s. We note
that the part of the region where no node visited during these 600 s was excluded for the evaluation of Hit .



Author's personal copy

636 S. Minamimoto et al. / Pervasive and Mobile Computing 6 (2010) 623–641

Fig. 22. Air photograph of the target map.

Fig. 23. Generated map in the large area.

Fig. 24. Hit in the large area.

Fig. 23 shows the estimated map in which all the buildings and pathways are reproduced. Fig. 24 shows the values of Hit
over time; the final value was 0.835. We note that the Hit value in the simulation with the normal distribution of position
errors with mean 5 m and variance 0.01 is 0.842, which is very similar. Furthermore, we can observe that Hit converges at
around 300 s, which means a reasonable time for map generation.
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Fig. 25. Example of overlaying two images.

Table 5
RSS calculated by the knife-edge diffraction model (versus height of obstacles).

The distance between two nodes d (m) The height of an obstacle h (m) RSS (dBm)

1 9.5 −95.8
2 2.0 −95.1
3 1.0 −95.6
4 0.5 −95.1
5 – –

6. Extensions and discussions

6.1. Combined use of existing and estimated maps

Although existing maps or satellite images may not present the latest geography nor detailed structure of buildings,
they are helpful in enhancing the performance of our algorithm. We have implemented a prototype system to display
an estimated map overlaid on an existing image like Fig. 25, which can increase the readability of the estimated map.
Furthermore, we may use existing maps in the rectangular approximation phase of the algorithm. More concretely, we
can use the information about the existing obstacles to estimate the shapes and positions of estimated obstacles by finding
correspondence. This procedure may help our algorithm to estimate the shapes of obstacles more accurately. We may also
generate maps by adding new estimated obstacles to existing maps, which is effective in reducing the computation time.

6.2. Increasing detection capability

When the two maps from GPS logs and communication logs are merged into a single map, we determine cell ga,b as
an obstacle cell if ga,b is determined as an obstacle in both maps. Hence, our method regards the area over which nodes
can communicate with each other but cannot transit as a non-obstacle area. For example, nodes may communicate with
each other over low buildings, a river and a cliff but cannot go through these areas. We discuss the possible extensions to
recognize such ‘‘low obstacles’’ and ‘‘impassable areas’’.

6.2.1. Low obstacle detection
Nodes may communicate over low obstacles by radio diffraction, and the proposed method may estimate that the cells

in this region are non-obstacle cells. Here, we verify the effect of radio diffraction at the top of obstacles on the proposed
method using the knife-edge diffraction model.

We assume that the nodes are JN5139moduleswith transmission power−18 dBm (themaximum radio range Rmax based
on the knife-edge diffraction model is about 55 m in this case) and 2.4 GHz frequency. The height of their antenna is set to
1.5 m from the ground. The RSS threshold of the JN5139 module is −96 dBm. We assume a slim obstacle at the center of
two nodes, as shown in Fig. 26. Based on the knife-edge diffraction model, we derive the maximum height h of the obstacle
for distance d between two nodes changing h by 0.5 m, when RSS is stronger than −96 dBm.

From the results shown in Table 5, we can see that nodes can communicate with each other with 1 m distance even
though the obstacle is rather tall. This is because over a shorter distance, attenuation by distance is smaller than that by
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h

d

Fig. 26. Knife-edge diffraction model.

Fig. 27. Generated map with gradation.

diffraction. However, when the distance d is longer than 2 m, attenuation by distance has a great impact on the RSS. In
particular, nodes cannot communicate if the distance is longer than 5 m. Furthermore, in the case of thick obstacles, the
RSS is decreased because radio diffraction occurs at many points on the obstacles. As a result, it is not likely that nodes
communicate with each other over low buildings.

6.2.2. Impassable area detection
The proposedmethodmay regard impassable areas over which nodes can communicate with each other as non-obstacle

areas. One plausible approach to recognize such areas is to detect the nodes’ detour fromGPS logs. However, since the nodes
may not always follow the shortest path, we cannot rely on such a way of detection.

Therefore, we take an approach that uses the ‘‘likelihood’’ of obstacles instead of binary decision. For each cell, we
calculate the ratio of the transit count over the cell to the expected average transit count. Then the color of each cell is
determined as white color’s RGB(255, 255, 255) value multiplied by the calculated ratio. As a result, the color of a cell can
represent its likelihood of being an obstacle. Another simple approach is to represent the difference of two maps generated
by the GPS-based procedure and the communication-based procedure using different colors. Figs. 27 and 28 illustrate the
maps by these approaches, respectively.

6.3. Analysis of the amount of communication logs

Finally, we discuss the number of communication logs necessary to achieve sufficient accuracy. We revisit the result in
Fig. 12. In all the cases of Rmax, the estimation accuracy is convergent when we use communication logs collected for more
than 300 s, which correspond to 4000 communication logs. In order to evaluate the time to obtain 4000 communication
logs, we conducted simulations varying the number of nodes (15, 30 and 45). The other parameters were set to the values in
Table 2. It took 352 s, 143 s and 94 s with 15, 30 and 45 nodes, respectively. From these results, the proposed algorithm can
generate a local map with 85% accuracy assuming only 15 members’ GPS logs and communication logs collected for 6 min.
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Fig. 28. Generated map with different colors.

7. Related work and contribution

In this section, we introduce existing techniques for map generation, and explain why it is difficult to use them in our
case.

7.1. Object and geography recognition in various application domains

Recognizing the shapes, materials and positions of objects using cameras and sensors has been considered in many
application domains for different purposes. In Intelligent Transport Systems (ITSs),manymethodologies have been designed
for vehicles to recognize obstacles and pedestrians to assist safe driving. For example, [13] proposes amethod that identifies
pedestrians and obstacles on roads using stereo cameras and range measurement sensors like infra-red sensors and laser
sensors. Themethods described in [14,15] estimate the positions of neighboring vehicles using sensor fusion techniques and
inter-vehicle communication. In [16], the authors propose a method to detect and track road signs from landscape images,
whereas [17] proposes a method that updates the existing map by discovering new roads using the GPS positions of cars.

Meanwhile, some methods of localizing nodes in sensor networks try to estimate such topology that involves ‘‘holes’’
where no node exists and no communication occurs over them [18–23], whereas [24] proposes an obstacle localization
method that uses the effect of obstacles on wireless communication assuming that there are no sensors in the obstacle field.
However, these methods are designed for sensor networks with a large number of stationary nodes. Therefore it is very
difficult to apply them to our problem.

7.2. Position and map estimation for mobile robots

7.2.1. SLAM overview
Simultaneous localization and mapping (SLAM) techniques [25,26] have been well investigated. One common goal is to

control the movement of autonomous robots in unknown environments such as disaster scenes. These SLAM techniques
build maps of the surroundings and simultaneously estimate the positions of mobile robots. The methods described in
[25,26] assume that each robot has cameras, range measurement sensors and gyroscopes, and the robot creates local maps
using the information from these devices. Then the methods create an entire map of the environment by fusing the local
maps based on the positions of mobile robots estimated by dead reckoning. In this way, the SLAMmethods require accurate
distance to obstacles and considerable computation power to process enormous amounts of data from the devices. In
addition, many methods have been proposed using laser range sensors [27], sonic waves [28], ultrasonic waves [29] and
cameras [30] to generate maps. However, these methods require special hardware for measurement, which is not ideal for
disaster situations.

7.2.2. Basic principle of SLAM
We introduce the basic principle of SLAM approaches. We believe this is helpful in understanding the difference from

our approach.
We denote a state to be estimated and measurement data that correspond to sensing from the environment as x and d,

respectively. According to the Bayes rule, the probability of state x under d is given as
p(x|d) = η · p(d|x) · p(x) (6)
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where p(d|x) denotes the likelihood ofmeasurement data d under state x, and p(x) represents the likelihood of state x before
the measurement of d. η normalizes p(d|x) · p(x) to a probability distribution.

Sincemeasurement d is obtained and state d is changed over time in robotic mapping, we introduce the notion of time to
Eq. (6). We let xt and dt denote the state and measurement data at time t , and let Dt denote the sequence of measurement
data till time t , i.e., Dt = (d0, . . . , dt−1, dt). We obtain the following:

p(xt |Dt) = η · p(dt |xt) · p(xt |Dt−1). (7)
We note that p(xt |Dt−1) is a probability distribution obtained as the product of the transition probability from state xt−1 to
state xt and the likelihood of xt−1 under measurement Dt−1.

p(xt |Dt−1) =

∫
p(xt |xt−1) · p(xt−1|Dt−1)dxt−1. (8)

Using Eq. (8), Eq. (7) can be transformed into

p(xt |Dt) = η · p(dt |xt)
∫

p(xt |xt−1) · p(xt−1|Dt−1)dxt−1. (9)

In robotic mapping, measurement data dt are usually pairs of zt and ut , which are data from the robot’s sensors (called
sensor data) and robotmotion commands in the time interval [t−1, t), respectively. Knowing that robotmotion commands
are independent of states and that the sensor data do not affect the states, Eq. (9) can be transformed into

p(xt |Zt ,Ut) = η · p(zt |xt)
∫

p(xt |ut , xt−1) · p(xt−1|Zt−1,Ut−1)dxt−1 (10)

where Zt and Ut are the sequences of z and u till time t , respectively. Furthermore, since state xt is usually a pair of a mapm
which is time-independent and a state st of the robot, we finally obtain

p(st ,m|Zt ,Ut) = η · p(zt |st ,m)

∫
p(st |ut , st−1) · p(st−1,m|Zt−1,Ut−1)dst−1. (11)

Eq. (11) indicates that, for estimation of a map and a state of the robot, we need prior knowledge of p(st |ut , st−1) and
p(zt |st ,m) in addition to the data and motion sequences Zt−1 and Ut−1. p(st |ut , st−1) is a state transition probability from
st−1 to st with motion commands ut . Since this probability is time independent, p(st |ut , st−1) can be rewritten as p(s|u, s′),
and this is generally called the motion model. This can be known beforehand as the robot’s motion specification. p(zt |st ,m)
is also a time-independent probability that represents the likelihood of sensor data under a pair of a state and a map. This
can be rewritten as p(z|s,m), and is generally called the perception model. This can also be known by prior learning on how
the sensor data are generated from states and maps.

7.2.3. Why not SLAM?
SLAM is designed for mobile robots. It is not suitable for first responders who move around the disaster sites, for the

following reasons. First, it is difficult to control and record first responders’ precise motions such as movement distance and
direction; i.e., there is nomotionmodel of first responders. It should also be noted that, unlike for robots, the ‘‘states’’ of those
responders are not stable since they are engaged in rescue activities. Furthermore, it is not realistic to impose additional
burdens on those responders to measure the environment. Distance measurement involves dedicated actions and devices.
Taking pictures and video are of limited use at night and need additional information on shot directions and positions.

7.3. Our contributions

The contribution of ourmethod is two-fold. First, we only use ad hoc communication devices and GPS receivers ofmobile
nodes. Since they are very general nowadays and they do not require dedicated actions for measurement, they can be used
in rescue operations [2] or many other cases. Secondly, estimating obstacle maps using those devices is a very new and
challenging problem. For this problem, we have developed an efficient and practical algorithm using both the position and
the communication history of mobile nodes, incorporating image-processing techniques.

8. Conclusion

We have proposed an algorithm to estimate the shapes and positions of obstacles using mobile nodes’ ad hoc
communication devices and GPS receivers. The proposed algorithm estimates movable space and obstacles using GPS logs
and communication logs, and refines the result by applying some image-processing procedures to obtain a readable map.
Through several experiments in simulations and real environments, we have shown that our algorithm could generate
readable and accurate maps.

As we stated in Section 1, medical doctors and rescue workers say that geographic information is very important in
rescue and treatment actions in emergency situations. Therefore, in our ongoing project [2], we are trying to incorporate
this algorithm into our ‘‘electronic triage system’’ for instant and automated generation of local maps. We will also conduct
more experiments in real environments to assess the scalability and availability of our algorithm. This is part of our ongoing
work.
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