
Hybrid Testbed Enabling Run-time Operations for Wireless Applications

Kumiko Maeda, Keisuke Nakata, Takaaki Umedu, Hirozumi Yamaguchi,
Keiichi Yasumoto† and Teruo Higashino

Graduate School of Information Science and Technology, Osaka University
1-5 Yamadaoka, Suita, Osaka 565-0871, Japan

{k-maeda,k-nakata,umedu,h-yamagu,higashino}@ist.osaka-u.ac.jp
†Graduate School of Information Science, Nara Institute of Science and Technology

8916-5 Takayama, Ikoma, Nara 630-0192, Japan
yasumoto@is.naist.jp

Abstract

In this paper, we propose a hybrid Testbed enabling
Run-time Operations for Wireless network Applications
(TROWA). TROWA is a wireless network emulator and
its simulation core is based on the network simulator
MobiREAL. TROWA can emulate packet transmissions in
multi-hop wireless networks in real-time, with realistic mo-
bility models of urban pedestrians. Also it provides APIs
that allow real stations to connect with their simulated net-
works with a little modification of applications and proto-
cols. One of the significant features of TROWA is the control
interfaces to manipulate the movement of simulated nodes
during the execution of applications. This enables perfor-
mance analysis and algorithm validation in an efficient way.
Additionally, TROWA can improve the accuracy of real-time
simulation by prioritizing the simulation events. By several
experiments for a VoIP application, we show the usefulness
of TROWA.

1 Introduction

Performance evaluation of mobile wireless network ap-
plications and protocols is a complicated task. To improve
the fidelity of evaluation with low-cost environment, net-
work emulators which allow to test real applications run-
ning on real stations have been presented [10,11,15–18,20,
23]. However another issue needs to be considered; it has
been proved in many literatures that in mobile wireless net-
works that are highly dynamic, lack of realism in node mo-
bility affects the fidelity of performance evaluation [5, 6, 8].
Therefore, we may prepare realistic mobility models in sim-
ulation of mobile wireless networks, but are still faced with

simulated
node
real node

correspond

correspondsender

receiver receiver

simulation field

LAN etc.

control
interface

Figure 1. Overview of TROWA architecture

difficulty in designing certain kinds of test scenarios. A typ-
ical example is a routing strategy test; we may want to dis-
connect established routes by removing a relay node in var-
ious situations for checking the reliability of the route repair
process. This scenario can be implemented by specific node
placement and movement, however it is difficult to do so in
any situation – e.g. for any number of nodes, placement,
movement and geography, it may be impossible.

In this paper, we design and develop a new development
environment called TROWA. TROWA enables the use of
real application codes on real mobile terminals connected
to a simulated network (see Fig. 1). Since the mobility
models used in the simulated network include the Urban
Pedestrian Flows (UPF) model [14], we may evaluate tar-
get applications under realistic city environments. TROWA
contains a suite of “control interfaces”, which manipulates
the movement of mobile nodes, gives the user inputs to the
target application in run-time, and visualizes the node mo-
bility and network status during the simulation. Using these
functions, for example, we can test to what extent video
quality decreases in multicasting movies on MANET when

letting a multicast relay node move into a congested region.
Also, we can verify how the file caching strategy works in a
P2P file sharing application on MANET when we let a node
walk around in the target area. We can visualize the files
actually cached on the node to see how the strategy works
in real environment. Through several experiments to run a
VoIP application on two real terminals connected through
a simulated MANET with the DSR protocol, we show the
usefulness of TROWA.

TROWA offers APIs at the three layers (application,
transport and network layers) to connect real terminals with
the simulator. By using these APIs, protocol data units
(PDU) issued by a real terminal of the corresponding layer
are passed to the simulator, and the protocols under the cor-
responding layer are simulated. To realize real-time simu-
lation, we prioritize packet processing events over the other
events like node movement processing events. By this we
can guarantee the timeliness of packets by sacrificing com-
putation of node position updates and others.

Through the experiments, we show that TROWA can re-
duce the average delay in real-time simulation by up to 25%
while keeping the location update error small enough. Also
we have proved the usefulness of the facilities; node manip-
ulation and real-time simulation with real applications.

2 Related Work

Network simulators such as ns-2 [2], OPNET [3] and
Qualnet [4] have been widely used for the evaluation of
network traffic. On the other hand, to test and evaluate
the end systems themselves, many network testbeds have
been developed [10, 11, 15–18, 20, 23]. StarBED [20] is a
large-scale network testbed integrating simulation with em-
ulation. They offer hundreds of physical nodes and can em-
ulate thousands of virtual nodes. ORBIT [18] also offers
about 400 inter-connected stationary wireless nodes that can
emulate specified network topologies and traffics. Due to
their features, they are mainly used to test the wide-scale
(e.g. campus-scale, city-scale or Internet-scale) networks.

On the other hand, other types of testbeds like [10,11,17,
22] can be built in small spaces such as laboratory rooms
and thus can easily be used to test end system applications.
They mainly use physical nodes with some emulation tech-
niques. In MobiEmu [22], using a packet filtering technique
at the MAC layer, a testbed for implementing a given net-
work topology is constructed. Mobile Emulab [11] takes a
direct approach that uses mobile robots to move terminals
physically. In MiNT project [10], a miniaturized wireless
network testbed is constructed. In these testbeds, the accu-
racy of packet transmission is a benefit, however the scale
and topology of target networks are limited by the number
of physical nodes, their capability of movements, and space
to deploy these nodes.

The hybrid approach in which simulation is integrated
into emulation is reasonable to balance the timeliness of
packet processing, adaptivity to the scale and topology, and
hardware cost. ns-2 [2] implements an emulation function
that allows real nodes to connect to simulated networks.
TWINE [23] is a hybrid emulation testbed for wireless net-
works and applications, which can adaptively combine sim-
ulated, emulated and physical subnets. Based on this, a
WHYNET framework is presented in [21] and several case
studies are given. MobiNet [15] enables to test IP-based un-
modified applications by emulating multi-hop wireless net-
works over a LAN cluster.

Our approach is close to the hybrid approaches, how-
ever it differs in the following points. We mainly focus
on highly dynamic mobile wireless networks where node
mobility strongly affects the network performance [5, 6, 8].
In such a network, application developers may want to test
application performance with many mobility scenarios and
geographical environments. To help those developers, we
provide such a system that can simulate the realistic behav-
ior of nodes based on the network simulator MobiREAL [1]
and can control the movement of nodes. Also these opera-
tions can be done through GUIs. By this feature, developers
can easily generate intentional route disconnection in test-
ing routing protocols and many other situations that are hard
to predict in advance. We have presented the results from
case studies considering real-world applications.

In addition, we consider the priority of events so that
events regarding packet transmissions can be prioritized to
those regarding node mobility to realize real-time simula-
tion. In such a situation, we have evaluated the trade-off
between the timeliness of packet scheduling and node lo-
cation accuracy. There are some existing researches that
apply parallel distributed simulation to the network emula-
tor [7,19]. The network simulator MobiREAL also supports
parallel discrete event simulation [13]. As for a part of our
future work, we are planning to apply our event prioritizing
method to the parallel discrete event simulation to improve
the timeliness of the scalable network simulation.

3 Overview of TROWA

We show the overview of the TROWA architecture in
Fig. 1. In TROWA, real mobile terminals are connected
via low delay networks (e.g. LAN) to a single host that sim-
ulates its network behavior. Hereafter, we distinguish two
types of nodes in the simulated networks, simulated nodes
and real nodes. Simulated nodes appear in the simulation
field as shown in Fig. 1 where their entire components are
simulated, while in real nodes their application codes and
higher layer protocols are executed on real stations. These
applications and protocols on real nodes use TROWA APIs
to interact with simulated lower layers of the node instances

assigned to those real terminals so that they can communi-
cate with simulated nodes and vice versa.

TROWA uses TCP communication with the socket li-
brary for cooperation between real terminals and the net-
work simulator. It does not modify its OS dependent li-
braries nor limit the environment of real terminals. We offer
three layers’ APIs, the application layer API, the transport
layer API and the network layer API. We specify one of the
above APIs used by each real terminal. If a protocol data
unit (PDU) of the specified layer is transmitted as data of
the socket communication from the real terminal, the PDU
is translated into the usable format in the simulator and is
passed to the corresponding layer of the assigned node in-
stance. In the case of using the application layer API, the
real application sends the destination IP address, type of
transport layer protocol, data to be transmitted and so on to
the simulator, then the simulation of the transmission is ini-
tiated from the transport layer. If the node instance assigned
to the real node receives a PDU of the specified layer, the
PDU is transmitted to the corresponding real terminal.

3.1 Visualization and System Control

TROWA provides a set of control and visualization in-
terfaces (called control interface for simplicity) which have
the following three functions: (1) visualization of simula-
tion status, (2) run-time manipulation of node movement,
and (3) remote operation of applications on real terminals.
We illustrate how multiple components interact to provide
these functions in Fig. 2.

The control interface runs on the Microsoft Windows
platform. The control interface and the simulator cooperate
by exchanging control data over TCP connections. There-
fore, the simulator and the control interface can run on sepa-
rate computers. For example, we can execute the simulator
on a high-performance workstation and the control inter-
faces on a consumer PC.

3.1.1 Visualization

In the main window of the visualization tool, the movement
of nodes, wireless links, packet propagation and others can
be visualized. We can choose whether these objects are to
be displayed or not during simulation. It can also show
some metrics like node density and packet loss rates mea-
sured in each region separated into grid cells.

3.1.2 Manual Operation of Mobility/Application

We can control movement of nodes manually through the
control interface. We can change the positions, speeds and
directions of nodes and add/delete nodes. In TROWA, the
movement of a node is represented as a sequence of way-
points, each of which consists of (x,y)-coordinates, pause

Simulator

Real Terminal Control Interfaces
operate

application
& protocols

of simulation node

mobility
control info.

animatorreal applications
real protocols

physical networks

CPE

user

API

operate directly

application
operation

packet

traffic data

lower layer
protocols

mobility
simulation

module

simulation
status

simulation status

Figure 2. Component Interaction in TROWA
Control Interface.

duration and velocity. During execution, waypoints can be
added, deleted, or modified.

For usability, it is desirable to operate applications run-
ning on plural real terminals from a single interface. One
way is to let the application programs and the control in-
terface exchange application operation packets through the
TROWA APIs, in parallel with data packet exchange. This
packet includes commands to operate the applications. In
this case we may need to implement a simple interpreter
that understands the specified commands.

Another way is to prepare general GUIs like buttons and
forms in the control interface. Although the applications
are limited to Java programs, we have decided to use Javas-
sist [9] to edit binary codes of Java programs. Javassist
allows to change class definition, add fields and methods,
change methods and so on without deep knowledge on the
binary programs. Thus we can replace the common class
GUIs with the class which can remotely be operated by the
control interface through the TCP channel used by TROWA
APIs. When we click a button on the control interface, the
application operation packet is sent and the application pro-
gram would behave as if the local button on the real terminal
were clicked.

3.1.3 Automatic Operation of Mobility/Application

In TROWA, the human behavior of commands/data input to
applications can be emulated. We use Condition Probabil-
ity Event (CPE) model [12] as their user description model
and a part of mobility. If one of the methods described in
Section 3.1.2 is applied to the application program, we can
automatically operate the application according to the CPE
model. CPE model is a rule-based behavior description lan-
guage and can represent such a situation that mobile nodes
(or their users) dynamically change their behavior accord-
ing to their environments. For details, see [12].

High priority event

Low priority event

Simple
method

Proposed
method

decrease delay

Figure 3. Overview of event processing
method.

4 Real Time Simulation

In this section, first we explain how to realize real-time
simulation. Then we show our experimental results on the
accuracy of the synchronization.

4.1 Implementation

For real-time simulation, it is required to synchronize the
simulation clock with the real clock, and each simulation
event like packet transmission must be executed at accurate
time. In parallel, TROWA simulates node mobility, however
this mobility simulation may increase its processing load
and may have bad influence on real-time simulation. Many
realistic mobility models and some random-based mobil-
ity models need periodic updates of all nodes’ positions.
This position update does not require so much computation
power. However, if this update is scheduled to the same
time with packet processing events, they may cause tempo-
rary delay of event processing and we may lose timeliness.

In order to solve this problem, we propose a method to
reduce the temporary delay of the simulation clock by prior-
itizing the execution of packet processing events. We clas-
sify simulation events into high-priority events that need
strict timeliness like packet transmissions and low-priority
events that are allowed to be delayed for a while like mo-
bility calculation, mobility trace processing, statistical data
processing and so on. Then we fragment low-priority events
into smaller processing units and execute each unit when
there is no high-priority event to be processed.

First, we explain how real-time simulation progresses
in TROWA. TROWA adopts Discrete Event Simulation
(DES). In DES, simulation progresses by executing events
in the order of their timestamps. All events are stored in
the event queue in the ascending order of the timestamps.
Then the event at the head is dequeued and executed and
new events generated by this execution are queued.

In TROWA, we use the following simple scheme to let
the simulator clock synchronize with real time. First, the
simulator gets the real clock value T0 when the simulation

starts (the simulator clock is 0 at this moment). Then the
simulator executes the next event as soon as the current
value Tnow of the real clock satisfies Tnow − T0 ≥ Snext

where Snext is the timestamp of the next event.
As seen above, in real-time simulation each event should

occur along the real clock and this differs from DES which
processes each event right after the previous event. There-
fore, in the proposed method, we use the waiting time be-
tween two events to execute low-priority events. We show
the overview of the proposed event processing method in
Fig. 3. In the proposed method, the simulator fragments
each low-priority event into smaller processing units. Each
processing unit should be small enough to be able to expect
that its processing time is not greater than a certain thresh-
old δ. Then the simulator executes each unit if residual wait-
ing time is larger than δ. Even in this scheme, in order to
avoid too large delay of low-priority events, we should set
their appropriate deadlines and prioritize them when their
deadlines are approaching.

To handle the PDU transmitted from real terminals,
sockets of real terminals are polled after execution of each
simulation event, and process PDUs immediately if there
are received PDUs. In additionCif there is no event that can
be processed, the simulator waits until the processing time
of the next event by watching the sockets.

We think that our proposed method prioritizing simula-
tion events can be applied to the existing parallel and dis-
tributed simulation techniques. It is important to consider
that parallel simulation makes some processes (machines)
wait for synchronization with other processes. This means
that if some processes delay their low-priority events, it may
make synchronization interval longer. Solving this problem
in TROWA is part of our future work.

4.2 Experimental Results

In order to evaluate the proposed simulation method,
we conducted some experiments to validate the number of
nodes that can be simulated in real time and the accuracy
(timeliness) of the event processing time.

In the experiments, we regarded mobility calculation
events as low-priority events. We measured the delay from
the real clock for each high- or low-priority event with and
without the proposed method. Since our method sacrifices
the preciseness of node positions to a certain degree by de-
laying position update events, we also measured the error of
the nodes’ positions to see the influence.

We used an ordinary PC (Pentium4 3.40GHz, 2GB mem-
ory) for executing the simulator and two laptop PCs (Pen-
tiumM 1.6GHz, 1.5GB memory) as real terminals for ex-
ecuting application programs. In the experiment, the one
real application send 1024 bytes data at 0.777s interval to
the other application. The fixed simulated nodes are placed

 0

 0.5

 1

 1.5

 2

 100 150 200 250 300 350 400

ru
nn

in
g

tim
e

ra
tio

 (
s)

number of nodes

proposed
simple

Figure 4. Running time of 100s simulation.

to let the simulated communication path between the real
nodes be 3 hops. In addition, we also placed simulated
nodes which follow the trace mobility with the 1 sec. inter-
val granularity (moving nodes). Those nodes send single-
hop broadcast packets at the interval randomly chosen be-
tween 10 sec. and 20 sec. The transmission range was set
to 100 meters and the duration of the scenario was 100 sec.
We used the application layer API. The size of the field was
500m × 500m. The deadline of the mobility calculation
event was set to 1 sec., so each position update event was
allowed to be delayed just before the next position update
event.

In Fig. 4, we show the ratio of the actual running time
(i.e., time to complete simulation in real clock) to the speci-
fied simulation time changing the number of moving nodes
from 100 to 400. In the figure, “proposed” and “simple”
represent the proposed method which executes low-priority
events during waiting time and “simple method” which ex-
ecutes all events in the order of their timestamps, respec-
tively. Fig. 4 suggests that with this simulation scenario we
can simulate up to 250 nodes in real time. We can see a little
overhead of the proposed method for over 300 nodes.

Next, in Fig. 5, we show the average delay and confi-
dence interval (95%) of the time when the events were ac-
tually processed from the real clock, changing the number
of nodes. The figure shows that the proposed technique can
reduce the average delay of the high-priority events by up
to 25% by delaying low-priority events. For the 300 nodes
case, the delay of the high-priority events of “proposed” and
“simple” were 2.2 sec. and 1.7 sec., respectively. As a re-
sult, in our current implementation and given settings, net-
works with up to 250 nodes can be simulated in real-time
without serious delay.

Fig. 6 shows the distribution of packet arrival interval
to the application at the destination (real terminal). ’sim-
ulation’ is the distribution of packet arrival interval in the
simulation time when we use the sequential (not real-time)
simulation and the application implemented in the simula-
tor instead of real application. The number of moving nodes

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14
 0.16
 0.18

 100 150 200 250

av
er

ag
e

de
la

y
(s

)

number of nodes

proposed
simple

(a) Delay of high-priority events

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 100 150 200 250

av
er

ag
e

de
la

y
(s

)

number of nodes

proposed
simple

(b) Delay of low-priority events

Figure 5. Delay of event processing clock
from real clock.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.65 0.7 0.75 0.8 0.85 0.9

C
D

F

packet receive interval (s)

simulation
proposed 0

simple 0
proposed 250

simple 250

Figure 6. Distribution of packet arrival inter-
val.

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 100 150 200 250 300 350 400

va
ria

nc
e

of
 in

te
rv

al
 (

s)

number of nodes

proposed
simple

Figure 7. Variance of packet arrival interval.

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 100 150 200 250 300 350 400

lo
ca

tio
n

di
ffe

re
nc

e
(m

)

number of nodes

Figure 8. Average distance of the node loca-
tion.

was set to 0 or 250. We assume that ’simulation’ is the
ideal distribution. The difference of ‘proposed’ and ‘sim-
ple’ from ’simulation’ depends on the delay of high-priority
events in Fig. 5. Also, Fig. 7 shows the variance of packet
arrival interval of the above case. The ideal value (‘simula-
tion’ in Fig. 6) is close to 0. We can see that our proposed
method reduces the variance.

Next, we show the average distance of the moving nodes’
positions between with and without the proposed prioritiz-
ing method in Fig. 8. The error was sampled just before the
update of the node positions in the proposed method. We
can say that the difference is really small compared with
the transmission range (100m), so the impact of this differ-
ence on the accuracy of simulation results is expected to be
quite small.

5 Case Study

In order to show the usefulness of two features of
TROWA, which allow us (1) to change the behavior of spec-
ified nodes in run-time and (2) to simulate wireless network
with real stations, we have conducted some experiments to
run a VoIP application over the DSR protocol on MANET.

5.1 Experimental Configurations

We used a map of actual urban area around Osaka Sta-
tion in Japan as the simulation field as shown in Fig. 9. The
size of the field was 500m × 500m. The total number of
nodes was about 200 and the speed of each node was 1.1
– 1.7 m/sec. Moreover, we reproduced realistic pedestrian
flows in urban areas based on the actually observed den-
sity on each street using the Urban Pedestrian Flow mobil-
ity model [14]. During the simulation, VoIP communication
data was transmitted at 9.6kbps. The radio range was set to
100 meters. We used IEEE802.11 DCF with the RTS/CTS
mechanism as the MAC protocol.

Figure 9. Snapshot of visualization tool.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 1 2 3 4 5 6 7 8 9
C

D
F

time to re-establish connection (s)

3 nodes
all nodes

no manipulation

Figure 10. Cumulative Distribution of Route
Repair Time

5.2 Intentional Route Break in DSR

In this experiment, we create the situation that was dif-
ficult to create without run-time manipulation in order to
show its usefulness. We evaluated the recovery time from
the DSR route break with the UPF mobility.

In the experiment, CBR traffic is generated from the
node at point A in Fig. 9 to the node at point B. We stop
the simulation temporarily using the GUI of TROWA when
the route is stable, delete 3 or all intermediate nodes, and
restart the simulation. By this we can simulate the situa-
tion that multiple nodes disappear at the same time. If we
use somewhat complex mobility model to improve the re-
alism, it is difficult to know in advance on which nodes the
route is established due to dynamics of network topology
and unpredicted movement of nodes in real environment.
To search the intermediate node in run-time, we may have
to add some function to the simulator, but we can soon find
the intermediate node and can delete the node with GUI of
TROWA.

Fig. 10 shows the cumulative distribution of route re-
pair time. In the graph, “3 nodes” represents the case where
three relay nodes on the DSR route were chosen randomly
and deleted, and “all nodes” represents the case where all
the relay nodes on the DSR route were deleted. Also for

 0

 200

 400

 600

 800

 1000

 1200

 0 100 200 300 400 500 600 700

sp
en

d
tim

e
(m

in
)

of samples

program (total)
program (human)

TROWA

Figure 11. Time to collect data of Fig. 10.

comparison purpose, we have evaluated an additional case;
“no manipulation” represents the case where no manipula-
tion was applied during simulation. We can see clearly that
disappearance of all the intermediate nodes makes the route
repair time longer. Also, we can see that the repair time
of “no manipulation” is smaller than the other two manip-
ulation cases. From this result, we can expect that in the
original node mobility without our operation, such a situ-
ation that forwarders suddenly and simultaneously disap-
pear cannot be observed. The run-time operation function
of TROWA enables us to give some intentional factor into
the on-going network simulation according to the visual-
ized current status. Next, we show an example to explain
how much TROWA helps simulator users in such a case.

To use network simulators, we need certain amount of
experience and much effort. To see how TROWA helps to
alleviate this burden, we have asked three master course stu-
dents in our laboratory to implement the function that au-
tomates the manipulation in the previous experiment into
the network simulator. The function finds the intermediate
nodes and deletes those nodes at the same time. The stu-
dent “A” having an experience of modifying the simulator
took about 4 hours, the student “B” took about 12 hours,
and the student “C” gave up after 4 hours. It seems to be
hard for inexperienced users to understand the source files
of the DSR protocol that have about 1600 lines including
the header files. Of course, this result is only an example,
but one can see that the implementation is not an easy task
as everyone can finish in a short time.

Fig. 11 shows an example of the time to collect data
used to obtain the results in Fig. 10 against the number of
the collected data samples. We show the time of two data
collection methods. One method is to implement the manip-
ulation function as explained above into simulator codes. In
this case, we need time to implement the function, which we
set to 480 minutes (this is the average time of two students
“A” and “B”) in addition to the time to run the simulation.
“program (human)” in the figure represents the time which
we have to spend for the experiment and most of the time
is for the implementation. The case “program (total)” rep-

resents the total time to collect samples and this includes
the running time of the simulation when we can spend our
time for other things. Another method is to use the TROWA
function and is “TROWA” in Fig. 11. In this case, we do
not need to write codes. Instead we directly specify which
nodes should disappear through GUI so we have to spend
our time while running the simulation.

Even though TROWA offers GUIs, we need to operate
the GUIs at any moment when we need to change situation.
Therefore, it might take much effort if we need to collect
large amount of data. For example, as shown in Fig. 11,
the time to collect samples by TROWA exceeds the time re-
quired to prepare the program if we collect 420 or more
samples. However the advantage of TROWA is that we
can easily simulate application/protocols under various situ-
ations. For example, before we conduct the detailed perfor-
mance evaluation, we may want to test the application with
a wide variety of configurations and find the best config-
uration in which we can examine the application’s various
aspects. In general preparing all of the configurations may
take long time and require a lot of efforts, thus we provide
an environment where we can set and modify configurations
through UI observing visualized simulation status. Conse-
quently we may reduce the cost of the trial and error process
required in conventional simulations. This advantage can
improve the efficiency of the design and the development
process.

5.3 Voice Quality over VoIP

In order to show the effectiveness of using real appli-
cation programs in terms of utilizing users’ perception for
the design of the application, we have asked six students to
make conversations through the real terminals in the context
of the VoIP application.

It is a common technique for VoIP client software to
buffer the voice data to salvage the delayed packets. When
we set the longer time for buffering, the data loss ratio be-
comes smaller and thus the playback quality of the voice
will be better, whereas the end-to-end delay becomes larger
and the perceptive delay quality will be worse. There is a
trade-off between playback quality and delay depending on
buffer size. In the experiment, changing buffer size in the
application program, we measured the loss ratio of voice
data and obtained subjective feedbacks from the students.

Fig. 12 depicts frequency that voice data was not re-
ceived for the interval longer than the specified time dura-
tion (0.25 sec to 4 sec in x-axis) on the 8 hop route varying
the buffer size of the VoIP application. The figure shows
that the buffering can clearly reduce the frequency of longer
intervals with no voice. Thus, the playback quality should
be improved.

To confirm the degree of this improvement, we con-

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 0.5 1 1.5 2 2.5 3 3.5 4

re
ve

rs
e

cu
m

ul
at

iv
e

co
un

t

data lost interval (s)

0.02 (s) buf
0.2
0.5
1.0
2.0

Figure 12. Distribution of data loss interval.

Table 1. Perceptive voice quality depending
on buffer size

buffered time (s) 0.02 0.2 0.5 1.0 2.0
Student A 1 1 2 4 4
Student B 1 1 1 4 4
Student C 1 1 1 3 3
Student D 1 1 2 3 4
Student E 1 1 4 4 3
Student F 2 5 5 4 3

1: terrible, 2:bad, 3:tolerable, 4:acceptable, 5:good

ducted a questionnaire to six students where each student
played back voice transmitted through 8-hop connection,
under five settings of the buffering time. The results are
shown in Table 1. Most students recognized the improve-
ment of the voice quality when the buffering time was 1.0
or larger. Two students preferred 1.0 sec buffering time than
2.0 sec due to the trade-off between the delay and the play-
back quality.

Although we can measure traffic characteristics like data
loss ratio and end-to-end delay by network simulators, it is
difficult to grasp human perception from the measured val-
ues. In the above experiment, the appropriate value for the
buffering time strongly depends on the user’s perception.
Therefore, it is quite important to evaluate such real-world
performance and develop applications considering it.

6 Conclusion

In this paper, we have proposed a new real-time wire-
less network emulation environment called TROWA for the
design and performance evaluation of mobile wireless net-
work systems. In TROWA, application programs on real
mobile terminals can be tested and verified through the sim-
ulated network. In addition to this real-time simulation fa-
cility, the one of the important feature of TROWA is that it
allows to modify the movement of nodes and to operate the

real application programs during the simulation, observing
the locations of nodes and network conditions. Thus we can
readily create various situations and can try them by remov-
ing implementation process that may have a large cost in
some cases. Actually, we have evaluated this situation in
our experiment, as well as another experiment which tested
user perception on VoIP quality over MANET.

As future work, we are planning to increase scalability of
TROWA emulator engine. The MobiREAL simulator, part
of its functions are incorporated into TROWA, supports par-
allelized DES [13]. By combining the DES and proposed
event prioritizing method, we try to speed up event process-
ing. We are also planning to open TROWA to public do-
main so that many developers can enjoy their benefit from
our design concept and software.

References

[1] MobiREAL Simulator Web Page. http://www.
mobireal.net/.

[2] ns-2. http://www.isi.edu/nsnam/.
[3] OPNET. http://www.opnet.com/.
[4] QualNet. http://www.scalable-networks.

com/.
[5] F. Bai, N. Sadagopan, and A. Helmy. The IMPORTANT

framework for analyzing the impact of mobility on perfor-
mance of routing for ad hoc networks. AdHoc Networks
Journal, 1(4):383–403, Nov. 2003.

[6] J.-Y. L. Boudec and M. Vojnovic. Perfect simulation and
stationarity of a class of mobility models. In Proc. IEEE
Infocom, volume 4, pages 2743–2754, 2005.

[7] R. Bradford, R. Simmonds, and B. Unger. A parallel discrete
event ip network emulator. In Proc. 8th IEEE Int. Symp.
on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS ’00), pages 315–
322, 2000.

[8] T. Camp, J. Boleng, and V. Davies. A survey of mobil-
ity models for ad hoc network research. Wireless Commu-
nications & Mobile Computing (WCMC): Special issue on
Mobile Ad Hoc Networking: Research, Trends and Applica-
tions, 2(5):483–502, 2002.

[9] S. Chiba and M. Nishizawa. An easy-to-use toolkit for ef-
ficient java bytecode translators. In Proc. 2nd Int. Conf.
on Generative Programming and Component Engineering
(GPCE ’03), pages 364–376, 2003.

[10] P. De, A. Raniwala, S. Sharma, and T. cker Chiueh. MiNT:
A miniaturized network testbed for mobile wireless re-
search. In Proc. IEEE Infocom, volume 4, pages 2731–2742,
2005.

[11] D. Johnson, T. Stack, R. Fish, D. M. Flickinger, L. Stoller,
R. Ricci, and J. Lepreau. Mobile emulab: A robotic wireless
and sensor network testbed. In Proc. IEEE Infocom, 2006.

[12] K. Konishi, K. Maeda, K. Sato, A. Yamasaki, H. Yamaguchi,
K. Yasumoto, and T. Higashino. MobiREAL simulator –
evaluating MANET applications in real environments –. In
Proc. 13th IEEE Int. Symp. on Modeling, Analysis and Sim-
ulation of Computer and Telecommunication Systems (MAS-
COTS), pages 499–502, 2005.

[13] K. Konishi, H. Yamaguchi, and T. Higashino. Efficient par-
allel simulation of mobile wireless networks by run-time
prediction of multi-hop propagation delay. In Proc. 3rd
IEEE Int. Conference on Testbeds and Research Infrastruc-
tures for the Development of Networks and Communities
(TridentCom 2007), 2007.

[14] K. Maeda, K. Sato, K. Konishi, A. Yamasaki, A. Uchiyama,
H. Yamaguchi, K. Yasumoto, and T. Higashino. Getting ur-
ban pedestrian flow from simple observation: Realistic mo-
bility generation in wireless network simulation. In Proc.
8th ACM/IEEE Int. Symp. on Modeling, Analysis and Simu-
lation of Wireless and Mobile Systems (MSWiM), pages 151–
158, 2005.

[15] P. Mahadevan, A. Rodriguez, D. Becker, and A. Vahdat.
MobiNet: a scalable emulation infrastructure for ad hoc and
wireless networks. ACM SIGMOBILE Mobile Computing
and Communications Review (MC2R), 10(2):26–37, 2006.

[16] D. Mahrenholz and S. Ivanov. Real-time network emulation
with ns. In Proc. of DS-RT’04, 2004.

[17] E. Nordstrom, P. Gunningberg, and H. Lundgren. A testbed
and methodology for experimental evaluation of wireless
mobile ad hoc networks. In Proc. 1st Int. Conf. on Testbeds
and Research Infrastructures for the DEvelopment of NeT-
works and COMmunities (TRIDENTCOM 2005), pages
100–109, 2005.

[18] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ra-
machandran, H. Kremo, R. Siracusa, H. Liu, and M. Singh.
Overview of the ORBIT radio grid testbed for evaluation
of next-generation wireless network protocols. In Proc. of
IEEE WCNC 2005, 2005.

[19] R. Simmonds, R. Bradford, and B. Unger. Applying parallel
discrete event simulation to network emulation. In Proc.
14th workshop on Parallel and distributed simulation (PADS
’00), pages 15–22, 2000.

[20] K.-i. C. Toshiyuki Miyachi and Y. Shinoda. StarBED and
SpringOS: Large-scale general purpose network testbed and
supporting software. In Proc. of Valuetools 2006, 2006.

[21] M. Varshney, Z. Xu, S. Mohan, Y. Yang, D. Xu, and
R. Bagrodia. WHYNET: a framework for in-situ evalua-
tion of heterogeneous mobile wireless systems. In Proc. of
ACM WinTECH ’07, pages 35–42, 2007.

[22] Y. Zhang and W. Li. An integrated environment for testing
mobile ad-hoc networks. In Proc. ACM MobiHoc, pages
104–111, 2002.

[23] J. Zhou, Z. Ji, and R. Bagrodia. TWINE: A hybrid emula-
tion testbed for wireless networks and applications. In Proc.
IEEE Infocom, 2006.

