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ABSTRACT
In this paper, we propose a new middleware, which sup-
ports implementation and evaluation of Application Layer
Multicast (ALM in short) protocols in real environments.
The middleware provides many functions by which it can
largely reduce the time and effort required for ALM proto-
col prototyping, performance evaluation and tuning. By us-
ing those functionalities, we have easily implemented several
well-known application layer protocols and successfully per-
formed their performance comparison in real environments.
As an example, we have implemented ALMI, NARADA,
NICE and OMNI as ALM protocols, and compared their
performance on PlanetLab. We believe that this is the first
effort made to develop this kind of ALM supporting middle-
ware.

Categories and Subject Descriptors
C.2.2 [Network Protocols]: Applications; D.2.2 [Design
Tools and Techniques]: Software libraries

General Terms
Design

Keywords
Application Layer Multicast, Middleware, Real Environment

1. INTRODUCTION
Application Level Multicast (ALM) has attracted a lot of

attentions and a number of ALM protocols, each one has
very good quality, have been designed for the last decade [1,
2, 3, 4, 5, 6]. However, in contrast to the success of P2P
based file distribution and streaming [7], only a few ALM
protocols (end host multicast protocols in particular) were
actually implemented and operated [8] even though they
have a great potential for launching communication or data
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sharing without relying on any service except the Internet
infrastructure. In this paper, we address the deployment
issue of ALM protocols. Our approach is to provide a mid-
dleware to facilitate to test and validate the operation and
performance of a wide variety of ALM protocols in real and
common environments.

Some of ALM protocols have been implemented experi-
mentally or practically, and are ready to run on the Inter-
net. In Ref. [2], an application level multicast communica-
tion library called ALMI has been implemented in Java. In
Yoid (Your Own Internet Distribution) Project [1] wrapper
scripts are provided as Yoid Software for Mbone tools such
as vic [9]. End System Multicast (ESM) [10] developed by
the research group at Carnegie Mellon University provides
a native code toolset based on the methodology in Ref. [3].
This tool is famous for its distribution of live video in SIG-
COMM2002 conference HyperCast [11] provides socket-like
Java APIs based on Delaunay Triangulation methodology in
Ref. [12]. RelayCast[13] is a middleware to aim at adapting
to various applications that require different metrics. Our
research group has also presented Java implementation of
EMMA [14].

Different from these toolsets which mostly implemented
specific protocols in different languages for experiment pur-
poses, we provide a framework to design and test (existing
or new) ALM protocols in real, common environments. In
the sence of toolsets for overlay protocols, MACEDON [15]
is a well-designed toolset which supports the development
of overlay protocols. However it mainly concentrates on im-
plementing DHT protocols and widely supports P2P over-
lays while our middleware is specified for the development of
ALM protocols and provids more various support functions.
Testing ALM protocols in real environments is quite im-
portant since their performance is strongly affected by end
hosts’ capabilities and configurations, while they are highly
abstracted or ignored in simulations. Moreover, the com-
mon environment enables us to build and run several ALM
implementations and compare them. Performance compari-
son of ALM protocols by simulation has been conducted [16]
and dedicated simulators have been provided [17]. However,
to our best knowledge, no paper has reported the compari-
son of ALM protocols in real environments under common
settings, and no tools and methodologies for such purpose
have been presented so far. Actually, we have implemented
the algorithms of ALMI [2], NARADA [3], NICE [18], OMNI
[5] and compared their performance on PlanetLab to show
that our middleware could help for quick and brief imple-
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Figure 1: ALM protocol classification with opera-
tions

mentation of their prototypes and efficient testing in real
environments.

2. MIDDLEWARE DESIGN AND
IMPLEMENTATION

2.1 Characterizing ALM applications
Existing ALM protocols can be categorized from the as-

pects of overlay topology (single tree, multiple tree or mesh)
and management policy (centralized or decentralized). This
categorization is shown in Figure 1 along with the opera-
tions and required information to perform them. After well
studying these characteristics, our middleware is designed to
give the maximum flexibility and functionality to all kinds
of ALM protocol development.

2.2 Functionalities of Middleware
Our middleware runs on each participant node. The func-

tionalities of the middleware are categorized to the following
six categories.

2.2.1 Topology management functions
In most ALM protocols, (1) overlay topological informa-

tion, (2) available bandwidth of nodes, (3) connectivity and
(4) delay between each pair of nodes are utilized. For in-
stance, newly joining nodes are favorably connected close
to the source node as to satisfy the delay constraint in a
multimedia streaming application. These functions are de-
scribed in the rest of this section, after categorizing them
into, (a) common functions, (b) centralized protocol specific
functions and (c) other protocol specific functions.

The common functions provide the following information,
which can be used by all protocol types of Figure 1. As
node’s information, node’s available bandwidth (dedicated
LAN bandwidth), utilized bandwidth ((h) and (i) in Figure
1) and any other protocol-specific information are provided.
In addition, IDs and network addresses of neighboring nodes
((j) in Figure 1) are provided as node’s connectivity infor-
mation. Finally, overlay and physical network delay to any
other node ((k) and (l) in Figure 1) is provided as delay
information. This information is stored in each node in a
decentralized scheme and in the administrative node in a
centralized scheme.

The centralized protocol specific functions are common for
all types of centralized ALM protocols. Their correspond-
ing information includes: IDs and network addresses of all
participant nodes ((a) in Figure 1) as node set information,
physical network delay and bandwidth between each pair of
nodes ((b) and (c) in Figure 1) as node pair information,
and join, leave timestamps and communication history as
node log information. This information is stored in the ad-
ministrative node.

Finally the other protocol specific functions provide the
following information for centralized single-tree, multiple-
tree and mesh protocols: root node(s) and tree structure(s)
information ((d), (e) and (f) in Figure 1) for single-tree and
multiple-tree protocols, the maximum delay and hop count
of tree and those from the root node, and mesh structure
information for mesh protocols ((g) in Figure 1). This in-
formation is stored in the administrative node.

2.2.2 Basic communication support functions
Our middleware provides the following functions for ba-

sic communication purposes; establishing/destroying over-
lay links between nodes, message passing (send, receive and
forward), and task scheduling for specified timestamps.

2.2.3 Multimedia support functions
Streaming protocols with their individual implementations

cannot be simply compared as the streaming performance
largely depends on the implementation method. So this
functionality of our middleware largely benefits the ALM
application development; multimedia passing (send, receive
and forward), and real-time play backing of the received
multimedia stream (under development). Here, multimedia
data passing is done using RTP/RTCP.

2.2.4 Performance monitoring functions
The following performance monitoring functions become

quite important for the maintenance of developed ALM ap-
plications: real-time displaying of node connectivity, band-
width, delay, packet-loss and jitter, real-time identification
of bottleneck nodes, and logging of messages, multimedia
passing history and overlay link establishing/destroying his-
tory. The information required to realize these functions is
acquired from the topology management functions, the basic
communication support functions and multimedia support
functions.

2.2.5 Execution support on PlanetLab
This functionality largely reduces the efforts required so

far for carrying out large scale experiments on PlanetLab;
remote manipulation of nodes such as adding, removing and
replacing, and node task (join, leave, etc) scheduling.



2.2.6 ALM protocol design support functions
These functions are provided for developers as high-level

(algorithm level) APIs: (i) basic tree construction: each
node is greedily connected to the tree satisfying a given
condition (e.g. minimum delay), (ii) k-connected mesh con-
struction: k neighbors are randomly selected, (iii) basic tree
recovering : recovering of the tree in a single node absence
(leaving or failure), by connecting the disconnected subtree
to left-node’s parent, (iv) information collection: periodic
collection of information, such as neighbor node information,
tree/mesh diameter or depth and (v) node swapping : child-
parent, child-grand parent, sibling wise, child wise, random
swapping of nodes satisfying a protocol-specified condition
(e.g. delay).

3. IMPLEMENTATION OF ALM
PROTOCOLS

In this section, we explain implementation of some well-
known ALM protocols, using our middleware. The complete
list of classes and APIs of our middleware will be given in
[19]. In each of the following examples, we first outline their
protocol behavior and then describe how our middleware
helps the implementation of those protocols.

3.1 ALMI
ALMI is a centralized, tree-based protocol. It mainly con-

sists of tree construction procedure and tree refining proce-
dure. As for the joining procedure new nodes are required
to inform their joining ambition to the tree-controlling node.
Then the tree-controlling node decides and informs appro-
priate positions for those nodes. Finally, the new nodes
have the responsibility of positioning themselves following
the controlling node’s instructions1. Our middleware imple-
ments this join procedure as shown in the pseudo-code of
Figure 2 . Note that the code only outlines the behavior of
the protocol, omitting the verbose parts like error handling.

A newly joining node sends ALMIJoinRequestPacket to
the SuperNode that controls the entire tree. The middle-
ware provides a handler called onReceiveALMPacket, which
is executed on receiving a message at a node. Therefore the
behavior of SuperNode for ALMIJoinRequestPacket can be
described in onReceiveALMPacket handler (line 02), such
as, (a) finding the connection situation of the tree by call-
ing CentralizedTreeConnection (line 03), (b) getting the list
of nodes where the residual degree is not zero (line 04), (c)
randomly selecting one among them, and, (d) informing the
selected candidate to the joining node by sending ALMI-
JoinReplyPacket.

In ALMI, periodical tree-refining procedures are carried
out at SuperNode after the initial construction. The middle-
ware supports this by providing onTopologyUpdate handler,
which is periodically executed. The actual refining is done
by making the nodes change their parents, and our middle-
ware’s ChangeParentPacket can be used to inform the new
parent candidates to the corresponding nodes (lines 16 and
20). Basically, the grand parent is selected as the new par-
ent candidate, and the node with the minimum delay is used
in case the grand parent has no residual degree (lines 15 and
18).

1Note that these basic steps are typical for most centralized
join procedures.

01:public void onReceiveALMPacket(
ALMNodeId senderNodeId, ALMPacket packet) {

02: if(packet instanceof ALMIJoinRequestPacket){
03: CentralizedTreeConnection connection = node.

getSuperNodeTopology().getConnection();
04: Vector<ALMNodeId> vec = connection.

getNodeIdsWithResidualDegree();
05: if(vec.size() > 0){
06: node.sendPacket(senderNodeId,new ALMIJoinReplyPacket(

vec.elementAt((int) (Math.random() * vec.size()))));
07: }
08: }
19:}
10:void onTopologyUpdate(){
11: Vector<ALMNodeId> sessionNodeIds =

treeConnection.getKnownNodeIds();
12: for(int i = 0;i < sessionNodeIds.size();i++){
13: ALMNodeId targetNodeId = sessionNodeIds.elementAt(i);
14: ALMNodeId grandParentNodeId = treeConnection.

getGrandParentNodeId(targetNodeId);
15: if(treeDegree.hasResidualDegree(grandParentNodeId)){
16: node.sendPacket(senderNodeId,

new ChangeParentPacket(grandParentNodeId);
17: }else{
18: ALMNodeId minLatencyNode = treeLatency.

getMinLatencyNode(targetNodeId);
19: if(!treeConnection.

isParentNodeId(targetNodeId,minLatencyNode)){
20: node.sendPacket(senderNodeId,

new ChangeParentPacket(minLatencyNode);
21: }
22: }
23: }
24:}

Figure 2: main part in source code of ALMI

3.2 OMNI
OMNI is also a tree based ALM protocol. But it is differ-

ent from ALMI in the sense of distributed tree management.
However, considering the fact that onReceiveALMPacket
handler is waiting at each node, join requests from multi-
ple nodes can be handled simultaneously at different nodes.
So the behavior on receiving OMNIJoinRequestPacket at
each node can be described in onReceiveALMPacket han-
dler (lines 02–03 in Figure 3). Here, the joining is permitted
by replying the join requesting node Nnew with OMNIJoin-
ReplyPacket, in case the adopting node has residual degrees
(lines 03–05). Otherwise, delays to the current neighbors
are measured (line 08) after queuing Nnew (line 07), and
the reply to Nnew is done depending on these delay values.

Note that it takes different measuring-times because of
different network connectivity, and the reply should be done
once the delay values of all neighbors are collected. For
this purpose, our middleware provides another event han-
dler called onEvent which is executed when the delay mea-
surement is complete (lines 12–13). Therefore, the behavior
for the corresponding event occurrence can be described in
onEvent handler as follows. OMNIJoinReplyPacket is sent
to Nnew (line 21) if it has a smaller delay than Nmax, which
is the neighbor with the maximum delay (line 18,19). In
the same time OMNIChangeParentPacket is sent to Nmax

(line 20). These two messages make Nnew replace Nmax, and
Nmax move to Nnew ’s child position. If Nnew has no smaller
delay than those of the current neighbors, the connection is
refused by an OMNIJoinRejectPacket (line 23).

This example illustrates how easily our middleware can
describe the behaviors of ALM protocols, even though they
consist of asynchronous procedures specific for decentralized



01:public void onReceiveALMPacket(
ALMNodeId senderNodeId, ALMPacket packet) {

02: if(packet instanceof OMNIJoinRequestPacket){
03: OMNIJoinRequestPacket oPacket =

(OMNIJoinRequestPacket)packet;
04: if(node.getTopology().getDegree().hasResidualDegree()){
05: node.getSocketHandler().sendPacket(oPacket.requestNodeId,

new OMNIJoinReplyPacket(node.getMyNodeID()));
06: }else{
07: joinWaitNodeQueue.add(oPacket.requestNodeId);
08: node.getTopology().measureLatency(oPacket.requestNodeId);
09: }
10: }
11:}
12:public void onEvent(Event event) {
13: if(event instanceof LatencyMeasuredEvent){
14: Vector<ALMNodeId> vec =

((LatencyMeasuredEvent)event).getUpdateNodeIds();
15: for(int i = 0;i<vec.size();i++){
16: ALMNodeId waitingNode = vec.elementAt(i);
17: if(joinWaitNodeQueue.contains(waitingNode)){
18: ALMNodeId maxLatencyNode =

node.getTopology().getMaxLatencyNode(
node.getTopology().getChildrenNodeIds());

19: if(node.getTopology().getLatency(maxLatencyNode) >
node.getTopology().getLatency(waitingNode)){

20: node.getSocketHandler().sendPacket(maxLatencyNode,
new OMNIChangeParentPacket(waitingNode));

21: node.getSocketHandler().sendPacket(waitingNode,
new OMNIJoinReplyPacket(node.getMyNodeID()));

22: }else{
23: node.getSocketHandler().sendPacket(waitingNode,

new OMNIJoinRejectPacket(maxLatencyNode));
24: }
25: joinWaitNodeQueue.remove(waitingNode);
26: break;
27: }
28: }
29: }
30:}

Figure 3: main part in source code of OMNI

schemes.

3.3 NARADA
NARADA is a mesh-based decentralized protocol. Here,

the newly joining node i becomes a member of the mesh by
connecting itself to the node sub-set N = {n1, ..., nk}. The
entire node list is assumed to be known by some application
specific method. We omit the explanation of this joining
part, as it is quite similar to that of ALMI or OMNI.

Similar to ALMI2, NARADA also consists of a periodical
refine procedure. However this differs from that of ALMI
in the sense of decentralized execution. In NARADA, the
delays to non-neighbor nodes are periodically measured and
new connections are established to those with less delay.
Remembering the decentralized join procedure of OMNI, it
is clear that this delay measurement and corresponding re-
placement tasks can be described in onEvent handler (lines
07–15 in Figure 4). So this decentralized refining procedure
can be easily implemented combining onEvent and onTopol-
ogyUpdate (lines 03–04) handlers.

3.4 NICE
NICE is also a mesh-based decentralized protocol. How-

ever it differs from NARADA in the sense of its hierar-
chical structure. NICE constructs multiple clusters where

2Though OMNI also has a refine procedure, we omitted it
due to the space limitation.

01:public void onTopologyUpdate() {
02: if(object instanceof MeshUpdate){
03: node.getSocketHandler().sendPacket(

getMulticastNodeIds(),new NaradaUpdatePacket(
new ConnectionInformation(),node.getMyNodeID()));

04: topology.getLatency().
measureLatency(getRandomKnownNodeIds());

05: }
06:}
07:public void onEvent(Event event) {
08: if(event instanceof LatencyMeasuredEvent){
09: Vector<ALMNodeId> updateNodeId =

((LatencyMeasuredEvent)event).getUpdateNodeIds();
10: ALMNodeId connectNodeId = topology.

getLatency().getMinLatencyNode(updateNodeId);
11: ALMNodeId secondNodeId = topology.getLatency().

getSecondMinLatencyNode(updateNodeId);
12: if(!topology.getConnection().isConnect(connectNodeId)){
13: node.getSocketHandler().connect(connectNodeId);
14: }else if(!topology.getConnection().

isConnect(secondNodeId)){
15: node.getSocketHandler().connect(secondNodeId);
16: }
17: }
18:}

Figure 4: update process of Narada

public class LayeredDistributedTopology extends
BasicDistributedTopology{

private ALMNodeId leaderNodeId;
private ALMNodeId nextLeaderNodeId;
private Vector<ALMNodeId> nextLayerNodeIds;

:
}

Figure 5: update process of Nice

each one forms a small mesh, and it constructs another
overlay mesh connecting those clusters to form a hierar-
chical mesh. As we already mentioned, our middleware
provides the basic classes, BasicCentralizedTopology, Ba-
sicDistributedTopology, BasicCentralizedTreeTopology and
BasicDistributedTreeTopology, to support centralized / de-
centralized, tree-based/mesh-based topologies. However, in
hierarchical-decentralized mesh topologies like NICE, the
management of each cluster and their upper layer mesh,
should be done separately.

For this purpose the middleware provides a new class
called LayeredDistributedTopology extending BasicDistribut-
edTopology, the basic distributed mesh-topology manage-
ment class. As the basic mesh-topology can be controlled by
our middleware’s BasicDistributedTopology class, (1) lead-
erNodeId: the leader node of cluster, (2) nextLeaderNode-
Ids: the leader of neighboring clusters, (3) nextLayerN-
odeIds: nodes of lower layer clusters, and, (4) methods to
set/get the values of (1)–(3) variables, are required to be
added. The code for (1)–(3) is shown in Figure 5. The code
for (4) is omitted due to the space limitation.

Figure 6 summarizes the lines of code (LOC) counts for
each protocol explained above. All protocols are easily im-
plemented in a few hundred LOCs. This result shows the
usability of the middleware. It reduces the work of im-
plementing basic communication functions and multimedia
functions. In addition, the functions specialized for ALM
protocols largely help the implementation.
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4. PERFORMANCE EVALUATION
We compared the performance of ALMI, OMNI,

NARADA and NICE, the ALM schemes implemented with
the middleware. The experiments were carried out on Plan-
etLab using our middleware’s execution support function,
and the multimedia support and performance monitoring
functions were used for the evaluation.

4.1 Experiment environment
First, we describe our experimental environment.

• number of terminals : about 100 (Asia:10, Europe:40,
America:45 and some others)

• terminal configuration : Pentium3 (1.2GHz) – Pen-
tium4 (3.4GHz), 512MB – 3.6GB memory, Linux OS
version 2.6.12-1.1398 FC4.5.planetlab

• Java : JDK1.5

• RTT (round trip time) of each pair of PlanetLab nodes
: mean 150ms, max 14000ms

4.2 Scenario of experiments
Overlay delay and RDP (Relative Delay Penalty) were se-

lected as general evaluation metrics and jitter and streaming
bandwidth were selected as the streaming evaluation met-
rics.

The scenario of our experiments is as follows. First, 20
nodes joined the application forming the initial topology.
Then streaming was started after assigning the “center
node” as the streaming-source. Here, the node joined first
was considered as the center node and the streaming-rate
was set to 500kbps, where we assume a video streaming ap-
plication. Note that we selected the same node as the source
node in each protocol.

Next, another 20 nodes were added and the same experi-
ment was carried out, and this was repeated until the num-
ber of nodes reached 100.

4.3 Experimental results
The experimental results are shown in Figures 7, 8, 9 and

10. Figure 7 shows the average streaming delay (network
delay + node delay) of each ALM scheme, and it states
that NARADA and NICE, the mesh-based protocols, have
smaller delay than ALMI and OMNI, the tree-based pro-
tocols. Especially, OMNI’s delay is much larger than the
others. One possible reason for this is OMNI’s defect of
performing its refinement only looking at the network delay.
So it may select nodes with small link delay and large node
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delay, which results in high streaming delay. However the
performance of these schemes from the aspect of link delay
is presented with RDP metric in Figure 8. We can say that
the overlay delay is rather large in NARADA. Note that we
defined RDP as the ratio of ALM protocol delay (includ-
ing data buffering delay at intermediate end hosts) to the
unicast delay which was measured by ICMP echo packets.
Figure 9 also says that the mesh protocols have smaller jit-
ters, which leads to better streaming performance. On the
other hand, Figure 10 states that the mesh protocols have
bigger bandwidth consumptions.

As it is already clear to the readers from the above exper-
iments, our middleware well supports the performance com-
parison of variety of ALM protocols. Also as the environ-
ment-dependent (thus unexpected) behavior of protocols,
we have experienced large jitters in OMNI and ALMI from
around 80 nodes. The protocol developers can improve, cus-
tomize and tune their implementation in real environments
by considering those protocols’ strong and week features
known by their nature of design or by simulations as well as
site-specific and application-specific behavior observed using
our middleware.

5. CONCLUSION
In this paper, we proposed a new middleware for support-

ing design and implementation of ALM protocols in real en-
vironments. Here, we have implemented ALMI, NARADA,
NICE and OMNI using our middleware, and carried out
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their performance comparison on PlanetLab. The compari-
son can be done in a few days, and several comparison results
have been obtained using our middleware (we omitted some
details of the comparison due to the space limitation). We
have a plan to open our middleware from on WWW soon
[19]. More detailed comparison with several ALM protocols
in real environments is part of our future work.
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