
A Formal Approach to Design Optimized Multimedia
Service Overlay

Hirozumi Yamaguchi
Graduate School of Info. Sci. and Tech.

Osaka University
Toyonaka, Osaka 560-8531 JAPAN

h-yamagu@ist.osaka-u.ac.jp

Khaled El-Fakih
School of Engineering

American University of Sharjah
P.O. Box 26666, Sharjah, UAE

kelfakih@aus.ac.ae

Akihito Hiromori
Graduate School of Info. Sci. and Tech.

Osaka University

hiromori@ist.osaka-u.ac.jp

Teruo Higashino
Graduate School of Info. Sci. and Tech.

Osaka University

higashino@ist.osaka-u.ac.jp

ABSTRACT
Service overlay networks have recently attracted tremendous
interests. In this paper, we propose a new integrated frame-
work for specifying services composed of service components
running on different service nodes and for executing the ser-
vices considering efficient utilization of overlay network re-
sources. For a given service description written in an ex-
tended Petri net model, our method automatically derives
a set of descriptions of service nodes’ behavior which spec-
ifies how service nodes on an overlay network collaborate
to provide the specified services. The derived descriptions
minimize channel utilization, total response time or load of
service nodes based on a given cost criterion. The experi-
mental results show that a multimedia service for decorating
and transcoding video contents can be well specified and im-
plemented.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed Applications

General Terms
Algorithms, Design

Keywords
Overlay Network, Service Composition, Multimedia Service

1. INTRODUCTION
A service overlay network is composed of service nodes

where application service components (mainly multimedia

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’05, June 13–14, 2005, Stevenson, Washington, USA.
Copyright 2005 ACM 1-58113-987-X/05/0006 ...$5.00.

service components like filtering, media transcoding and proxy
services) are running. Virtual connections are assumed be-
tween those service nodes. A service overlay is federation
of those service components to provide highly complex and
integrated services to its service users. Several algorithms
have been presented so far to design service overlay. For ex-
ample, Xu et al. [13] has proposed a QoS-aware service path
mapping algorithm. A service path is a sequential compo-
sition of service components (see Fig. 1(a)) and the service
path is mapped onto service nodes so that the required QoS
and network/computation resource constraints can be sat-
isfied. Wang et al.[11] and Gu et al.[5] have extended the
algorithm so that DAGs can be used to specify services. The
other recent publications [2, 4, 12, 1, 8, 10] have their own
characteristics. Most of them focus on bandwidth provision
between service nodes, assuming simple service specifica-
tions or traffic models (see Ref. [12] for brief survey).

In this paper, we propose a formal approach to design
optimized service overlay networks where a more general
service class based on an extended Petri net can be treated.
For a given extended Petri net description of service and
a given overlay network topology where service nodes are
fully-connected with each other, we automatically derive a
set of descriptions of service nodes’ behavior which speci-
fies how those service nodes collaborate to provide the re-
quired service. Moreover certain costs of the service can
be optimized to provide better utilization of overlay net-
work resources even though the service includes multimedia
contents processing and transmission. The experimental re-
sults, using an example description of video contents decora-
tion/transcoding service and a real network simulator, have
shown applicability of our method.

Compared with the existing methods[13, 11, 5, 2, 4, 12,
1, 8, 10], the major contributions of this paper are follow-
ings. (i) We can consider service resources such as multi-
media contents repositories located on some service nodes.
For such a service that includes service resources, we should
consider not only simple service path mapping, but also de-
sign of protocols for exchanging the contents of those service
resources on overlay networks. Fig. 1(b) shows such a ser-
vice that uses service resources. This provides a video con-

enhanced by
an image repair service

INPUT: a low quality video
(by mobile camcorder)

an enhanced
quality video

mixed with music by
music adaptation service

OUTPUT: an enhanced quality video
with music (to PC user)

(a) A service path example in Ref. [13] by Xu et al.

== "requested video exists in repository A"

search video
repository index

video repository A
(for PCs)

video repository index

INPUT : video request ("news, baseball, Oct. 01", "mobile")
 video request ("news, business, Oct. 08", "mobile")

transcoded video

trans(y)

search result

?search result

obtain video from
repository A
and transcode

video repository B
(for mobile devices)

== "requested video
 does NOT exist in repositories"

== "requested video exists in repository B"

obtain video from
repository B

register transcoded
video to repository B
and update index

OUTPUT: requested video
or notification of search failure

notification of search failure

obtain video from
repository B

obtain video from
repository A

register transcoded video
to repository B

transcoded video

transcoded video

search index

update index

(b) Our target service.

Figure 1: Comparison of service descriptions.

service node

overlay network

underlying(physical)
network

service users

service users

Figure 2: Service overlay architecture.

tents retrieval and transcoding service, using three service
resources; a repository A of video contents for PC users, a
repository B of low bit-rate video contents for mobile de-
vice users and an index table of repositories A and B to
process users’ queries of video contents by keywords. Sup-
pose that a mobile device user requests a video content with
keywords. This request is processed using the index table.
If the index search result indicates that the content is found
in repository B, the video content is taken from B and is
provided to the user. If it indicates that the content is found
only in repository A, the video content is taken from A and
transcoded into low bit-rate video. The transcoded video
is stored to repository B for other users and is provided
to the requested user. Since these repositories (service re-
sources) are allocated to some service nodes, it is easily un-
derstood that executing this service on cooperative multiple
service nodes requires a complex protocol between the ser-
vice nodes. We automatically derive a set of service nodes’
behavior descriptions from a given description of a service
with service resources like Fig.1(b). (ii) Overlay network re-
source utilization such as bandwidth and computation power
of service nodes can be optimized. Of course this is the
main issue considered and solved elegantly in the existing
work. However, for a more general service class which in-
cludes complex service flows with service resources, we need

different cost criteria and cost optimization methodology.
Moreover, we have conducted realistic experiments, using a
real network simulator and a realistic example. In general,
theoretical optimization may not be able to capture all the
situations in system usage. Thus we have proved that our
optimization is really effective in real environments, under
various arrival ratios of service requests.

2. DERIVING BEHAVIOR DESCRIPTION
OF SERVICE NODES

A service overlay is composed of service nodes on which
service components are running, and between any pair of
service nodes, there exists a virtual channel (i.e. a unicast
channel) called an overlay channel. An example of the ar-
chitecture is shown in Fig.2. Service users use appropriate
services from outside of the service overlay networks. From
these service users, the architecture of service overlay net-
works is completely hidden and it is seen as a single server.
However, actually the service nodes have to cooperate to
provide the required services under given limitation of net-
work and computing resources.

2.1 Inputs to the Algorithm
[Service Overlay Graph] We model the architecture as
a complete directed graph, where nodes SNi (i = 1, 2, ...)
correspond to service nodes and edges correspond to overlay
channels between service nodes. This graph is given as an
input to the algorithm. Fig. 3(a) shows an example of a
service overlay graph.
[Service Description] A service description is also given
to the algorithm. Fig. 3(b) shows an example of a ser-
vice description. This example corresponds to the one in
Fig. 1(b) and is written in an extended Petri net called a
predicate/transition-net (Pr/T-net)[3]. We use Pr/T-nets
for the description of services.

Intuitively, in Pr/T-nets, each arc from a place p to a tran-
sition t has a form of a linear sum L(p, t) =

P
1≤i≤n kiXi of

n-tuples of variables (n can be an arbitrary integer for each
place) where ki is a non-negative integer and Xi is a tuple of
variables like 〈x1, x2, ...xn〉. This is called an arc label. Each
token in place p is a n-tuple of values Ci = 〈c1, c2, ...cn〉, and
a set of tokens which can be assigned to arc label L(p, t) is
called an assignable set. Moreover, a transition may have a
logical formula of variables from the labels on input arcs of
t, called a condition. The arc from transition t to a place
p′ also has an arc label, which is a form of a linear sum
L(t, p′) =

P
i kiYi of n-tuples of functions where ki is a

non-negative integer and Yi is a tuple of functions from the
variables on the labels of input arcs of t. A transition t may
fire iff there exists an assignable set in each input place and
the assignment of values to variables by the assignable set
satisfies the condition of t. If t fires, new sets of tokens are
generated and put into the output places according to the
labels on the output arcs of t. Note that the data type of
token values in a place and the data type of labels of the
arcs from/to the place must be the same.

For modeling services, we define the following class of
Pr/T-nets. Places are classified into two types, (i) resource
places and (ii) service flow places. Resource places represent
service resources such as databases. The number of tokens
in the resource places never increases or decreases, i.e., the
transitions from the resource places are represented as self-

SN2

SN3 SN4

P2,P3

P4,P5

P1

SN1

P6,P7

(a) Service overlay graph (with allocation of places).

<keys,target>P5: video repository index

<retrieve(keys, target, idx)>

<"news, baseball, Oct. 1","mobile">

<A>

<INDEX>

repo=="A" repo=="B"

repo=="null"

P6: video repository
 A (for PCs)

P7: video repository
 B (for mobile)

P2

P3

P4 : service output

T1:search video index

T4: obtain video
 from repository B

T5: notify no video
 is found

T3: register transcoded video
 to repository B and update index

<idx,log>
<idx,add(keys,log)>

<repo,id>

<a>
<a>

<idx>

<add(id,"B",idx)>

<id, transcode(retrieve(id,a))>

<repo,id>

<repo,id>

<retrieve(id,b)>

<add(id,v,b)>

<id,v>

<v>

<null>

target=="mobile"

++<"news, business, Oct. 8","mobile">

T2: obtain video
 from repository A
 and transcode

P1: service input

(b) Service of Fig. 1(b) described in a Pr/T-net.

P5: video repository indexP1:service input

<keys,target>

<INDEX>

T1.α12

SN1 SN2 SN3

target=="mobile"

<retrieve(keys, target, idx)>
T1.α13

T1.α12

<idx,add(keys,log)>

T1.α13

T1.β32

T1.β32

<idx,log>

P2

<keys,target> <keys>

<keys>

<idx> <idx,log,keys>

<idx,log,keys>

<idx><keys,target>

<"news, baseball, Oct. 1","mobile">
++<"news, business, Oct. 8","mobile">

T1.β31

<φ>

<φ>

T1.β31

T1.start T1.read

T1.commit

T1.commit

T1.commit

(c) Service nodes’ behavior descriptions (for transition T1)

Figure 3: Derivation example.

loops where the contents of the resources may be changed by
executing the transitions from the resource places. In Fig.
3(b), places P5, P6 and P7 are such resource places. The
other places are service flow places. By removing the re-
source places and their self-loop arcs, the service flow places
and the transitions form a partial Pr/T-net which models
the execution flow of the service. It is called a service flow
net. The resource places and associated transitions are used
to represent the utilization of service resources in the service
flow net. To model multiple users who use the same service,
multiple tokens with different values can be given in the ser-
vice flow net. This class of Pr/T-net considerably extends
the expressive power to describe service requirements, com-
pared with the existing work (most of the work considers
only sequential services or services represented as DAGs).

In Fig. 3(b), service flows are modeled by service flow
places (denoted as white circles) and transitions, and video
repositories and their index are modeled by resource places
(denoted as meshed circles). Inside the service flow places,
there may exist multiple tokens to distinguish different users’
requests. For example, two tokens in place P1 represent
two service requests. Pr/T-nets can handle such multiple
flows in a single net, thus it is better to be used to write
a system which handles multiple users. Similarly, resource
places may have tokens inside, which represent the entities
of resources. Moreover, inside the transitions (rectangles),
conditions may be specified which use the variables from the
arc labels of service flow places. Using the condition, we can
describe conditional branches or iterations. For example,
service flow place P2 has multiple output transitions that
have conditions on the variable “repo” from the labels of the
input arcs from P2 to these transitions.
[Allocation of Places to Service Nodes] The algorithm
requires all the places of the given service description to be
allocated to the service nodes. For example, in Fig. 3(a),
places P1 to P7 are allocated to service nodes SN1 to SN4.
overlays will be discussed in Section 3. An allocation may be
designed manually by developers or an optimized allocation
that minimizes certain costs of the service can be obtained
using the Integer Linear Programming (ILP) technique de-
scribed in Section 3.

2.2 Output
[Description of Service Nodes’ Behavior] We assume
that places P1, P2 and P5 are located on service nodes
SN1, SN2 and SN3 respectively, as shown in Fig. 3(a).
Assuming this allocation of places, we see, in Fig.3(c), a part
of behavior of service nodes that corresponds to transition
T1 to understand service nodes’ behavior descriptions.

Each service node has its own behavior description written
in a Pr/T-net. Between the Pr/T-nets, we introduce places
for modeling asynchronous and reliable communication on
overlay channels called communication places. We assume
that two communication places with a common name “T.Xij”
(T represents the corresponding transition and X=α or X =
β, explained later) in the Pr/T-nets of two different service
nodes SNi and SNj represent message passing from ser-
vice node SNi to service node SNj through the overlay
channel between them. If a token is put on “T.Xij” at ser-
vice node SNi, the token is eventually removed and put it
onto “T.Xij” at service node SNj. Note that the prefix
“T” means that these communication places are used with
respect to the execution of transition T of the service de-
scription. Communication places are represented as dotted
circles in the following figures.

The transition T1 is executed as follows. At first, ser-
vice node SN1 takes a token (an assignable set) from P1
(user request spool) by firing of transition T1.start and as-
signs it to the tuple of variables “〈keys, target〉”. If the
assignment satisfies the condition of T1, then these values
are sent to SN2 and SN3 via communication places T1.α12

and T1.α13, respectively, since SN2 needs both values to
generate a token to P2 and SN3 needs the value of “keys”
to generate a token to P5. In response, SN3 takes a to-
ken from P5 by firing of T1.read. Since the value of token
taken from P5 is used to generate a token to P2, the value
of “idx” is sent to SN2 via T1.β32. Using these values sent
from SN1 and SN3, SN2 generates a token to P2 by firing

of T1.commit. Similarly, SN3 generates a token to P5 by
firing of T1.commit. Note that SN3 sends an empty value φ
to SN1 via T1.β31 to let SN1 know that SN3 could obtain
a token from P5. After knowing it, SN1 is ready to accept
the next token. For this mutual exclusion control purpose,
we introduce two places with black dots (empty value tokens
φ) in SN1 and SN3.

Tokens carried through T.αij and T.βjk are called α-messages
and β-messages, respectively. An α-message through T.αij

is used to carry values that will be used to generate token
values at the receiver service node SNj as well as to let SNj
obtain assignable sets from the input places of T allocated
to SNj. A β-message through T.βjk is sent in response to
reception of the α-message, and is used to carry the obtained
values that will be used to generate tokens at SNk.

2.3 Algorithm
The basic idea of the algorithm is inspired by our protocol

synthesis technique in Ref. [14]. For each transition t of the
given service description, depending on a given allocation
of places, we identify the set of service nodes called read-
ing service nodes which have at least one input place of t,
and also the set of service nodes called writing service nodes
which have at least one output place of t. Then we select
one of the reading service nodes as the primary service node.
Afterward, in order to execute t over multiple service nodes,
we apply to transition t the derivation algorithm based on
a protocol called a transition execution (TE) protocol that
determines how the behavior of t is simulated by service
nodes. By decomposing every transition of service descrip-
tion based on the TE protocol, we finally obtain the set of
behavior descriptions of service nodes.

3. FOR OPTIMIZED SERVICE OVERLAY
The algorithm described in the previous section assumes

that an allocation of places is given. In this section, we de-
termine an optimal allocation of places to service nodes to
derive an optimized service overlay. The optimal allocation
of places leads to the optimized service overlay where its
cost is minimized. The cost can be one of maximum chan-
nel utilization, maximum response time and maximum load
of service nodes. If we choose one of these costs to be mini-
mized according to application domains, we may give some
constraints on the other metrics. Using the optimal alloca-
tion of places, we can derive an optimized service overlay
according to the algorithm in the previous section.

We derive an optimal allocation of places using an Inte-
ger Linear Programming (ILP) problem. We introduce the
following 0-1 integer (boolean) variables; (i) αt

i,j [v] : one if
an α-message is sent from SNi to SNj and carries the value
of a variable v on the execution of transition t (zero other-
wise), (ii) βt

i,j [v] : one if a β-message is sent from SNi to
SNj and carries the value of a variable v on the execution
of transition t (zero otherwise), and (iii) alcp

j : one if place
p is allocated to SNj (zero otherwise).

The followings are the cost criteria. (i) Maximum chan-
nel utilization. Since these services deal with large-sized
(e.g. orders of giga-bytes) resources transmitted between
service nodes, it is very important to prevent those large-
sized resources from being transfered at the same time through
a single or a few overlay channel(s) with poor bandwidth.
Here, we try to identify a set of transition instances that
can be executed in parallel, for example, by maximum oc-

currence distance analysis [7]. Moreover, if two independent
users execute different transitions at almost the same tim-
ing, those transitions can be also regarded as parallelized
transitions. Using those techniques and service request pat-
terns of users, we can identify multi-sets of transitions that
may be executed in parallel. Let MT denote a set of those
potential multi-sets of transitions. Here, for each overlay
channel (i, j), we define the maximum channel utilization
of (i, j), denoted as utili,j , as the ratio of the maximum
amount of data to be transmitted through the channel (i, j)
at the same time, to the capacity of the channel. utili,j can
be defined as follows.

utili,j = max
M∈MT

(P
t∈M

P
v∈var(t)SZ(v)∗(αt

i,j [v]+βt
i,j [v])

BW (i, j)

)

Here, BW (i, j) denotes the capacity of overlay channel (i, j),
SZ(v) the size of a variable v, and var(t) the set of variables
that appear in the labels of the input arcs attached to the
transition t. We may want to minimize max(i,j)∈E{utili,j},
denoted as util, the maximum of the maximum channel uti-
lization of all the channels to avoid concentration of band-
width utilization where E denotes the set of the overlay
channels. (ii) Maximum response time. The maximum
response time of the service for a user, is the cumulative ex-
ecution time of the transitions on the “longest path” of the
service. According to the derivation algorithm, the execu-
tion time of transition t can be defined as the maximum of
the transmission time of a sequence of an α-message from
SNi to SNj and a β-message from SNj to SNk plus the
maximum of the execution time of functions that appear in
the labels of the output arcs from t to the places of t allo-
cated to SNk. Let TS(t, p) denote the sum of the task sizes
of functions attached to the arc (t, p) and PW (j) denote
the size of tasks which SNj can process per unit of time.
The maximum execution time of t, denoted as exect, can be
defined as follows.

exect = max
(i,j),(j,k)∈E

(P
v∈var(t) SZ(v) ∗ αt

i,j [v]

BW (i, j)

+

P
v∈var(t) SZ(v) ∗ βt

j,k[v]

BW (j, k)

+ max
p∈t•

j
TS(t, p)

PW (j)
∗ alcp

k

ffff

where t• denotes the set of output places of transition t.
Here, let LS denote the set of all the potential longest paths
(transition sequences) of a given service. We may want to
minimize resp = maxL∈LS

˘P
t∈L exect

¯
, the maximum re-

sponse time of the service. (iii) Maximum load of ser-
vice nodes. The maximum load of a service node SNj,
say loadj , can be defined using MT , which was used in the
definition of maximum channel utilization. loadj is given as
follows.

loadj = max
M∈MT

(X
t∈M

X
p∈t•

TS(t, p)

PW (j)
∗ alcp

j

)

We may want to minimize load = maxj∈S{loadj}, the maxi-
mum load of service nodes where S denotes the set of service
nodes.

Here, according to application domains, we can choose
one of the above metrics to be optimized, giving certain

constraints on the others if necessary. However, due to lim-
itation of space, hereafter we only present the ILP problem
that minimizes maximum channel utilization where certain
constraints are given to the maximum response time and
maximum load of service nodes.

The following is the objective function.

min util (1)

From the definition of “max” functions, the following con-
straints are necessary.

∀(i, j) ∈ E; util ≥ utili,j (2)

We may want to set certain thresholds of the maximum load
loadj of each service node SNj and the maximum response
time resp. Let LTH(j) and RTH denote the thresholds
of loadj and resp, respectively. We obtain the following
constraints.

∀j ∈ S loadj ≤ LTH(j) (3)

resp ≤ RTH (4)

In addition, we need the following constraints some of
which come from the definitions of variables and others from
the algorithm. priti is a 0-1 integer variable and the value
is one iff SNi is the primary service node in the execution
of transition t of the service. Ps is the set of service flow
places.

∀(i, j) ∈ E,∀t ∈ T,∀p ∈ •t,∀p′ ∈ t•,
∀v ∈ var(L(p, t)) ∩ var(L(t, p′));

αt
i,j [v] ≥ alcp

i + alcp′
j + priti − 2 (5)

βt
i,j [v] ≥ alcp

i + alcp′
j − priti − 1 (6)

∀(i, j) ∈ E,∀t ∈ T,∀v ∈ var(t); αt
i,j [v] + βt

i,j [v] ≤ 1 (7)

∀p ∈ P ;
X

j

alcp
j = 1 (8)

∀t ∈ T ;
X

j

pritj = 1 (9)

∀j ∈ S,∀t ∈ T, ∀p ∈ •t ∩ Ps;

alcp
j = pritj iff |p • | > 1

alcp
j ≥ pritj otherwise (10)

We note that if the ILP problem is hard to obtain an
optimal solution within realistic computation time, several
techniques can be used such as ε-approximation or linear
relaxation.

4. TOOL SUPPORT, APPLICATION EXAM-
PLE AND EXPERIMENTAL RESULTS

[Toolset] We have developed a toolset in Perl, which works
together with a graphical tool “CPNtools”. In the toolset,
we first describe the service using CPNtools. Second, our
toolset parses the given description of service in the CP-
Ntools format (described in XML with DTD) using XML
Parser, and generates the corresponding ILP model pre-
sented in Section 3. Third, we use the tool CPLEX to solve
the ILP problem and determine the optimal allocation of

T04:Decode and Shrink

Ps08:Uncompressed
video (QVGA, 30fps)

RAWVIDEO

Ps07:DV-format Video

DV

T10:multiplexT09:multiplex

Ps14:MPEG
audio layer II

MP2

Ps12:PCM

PCM

T05:encode

T11:Encode and
Upload to WWW server

rv

Ps11:High Quality
MPEG2 Video

MPEG2VIDEO

mp2

Ps17:MPEG2

MPEG2

Ps16:MPEG4

MPEG4

multiplex_m4(m4v,mp2) multiplex_m2(m2v,mp2)

m2v

T01:Search Opening
 and Ending Movies

Ps04:DV-format Video

DV

Pr03:Background Music DB

DB

Pr02:Ending Movie DB

DB

Ps01:Movie Keywords USERINPUT

keywords opening

opening

dv

shrink(decode_dv(dv))

Ps09:Uncompressed
Video (VGA, 30fps)

RAWVIDEO

decode_dv(dv)

T07:Mixing

music

music

Pr01:Opening Movie DB

DB

ending

ending

T03:Demultiplex

Ps02:Opening MovieDV

search(keywords,opening)

extract_v(dv) extract_a(dv)

pcm

T06:encode

rv

Ps10:High Quality
MPEG4 Video

MPEG4VIDEO

enc_rv(rv)

Pr04:HTTP Server DB

DB

m4v

enc_rv(rv)

Ps15:MPEG
audio layer II

MP2

mp2

append(mpeg4,db)

db

Ps03:Ending Movie

DV

search(keywords,ending)

T02:Merge
dv

dv1

dv2

Ps06:DV-format Video
with Opening/ending

dv

merge(dv1,dv,dv2)

T08:Encode

Ps13:PCM

PCM

enc_a(pcm)

enc_a(pcm)

mix(pcm,music)

pcm

mpeg4

Figure 4: Automated Video Decoration and
Transcoding Service

places. Fourth, using the optimal allocation of places, our
Perl toolset generates the corresponding set of service node
behavior descriptions.
[Application Example] Here, we consider an automated
video decoration and transcoding service on overlay net-
works as an application example. In this service, a given
movie in DV format is decorated by opening and ending
movies, and the decorated movie file is de-multiplexed into
video and audio files. The quality of the video is adjusted
depending on capabilities of users’ devices and then encoded
into appropriate formats, such as MPEG2 and MPEG4. The
description is given in Fig. 4.
[Experimental Results] Since our optimization is based
on estimated arrival ratios of user requests (recall that a
set MT of parallelized transitions used in the definition of
cost functions depends on arrival ratios of user requests), we
need to validate that the values of cost functions are really
improved by our optimization at any arrival ratio in realistic
network environments.

To do so, we have developed a simulator toolset by let-
ting two software tools collaborate with each other, (i) a
high-level Petri net simulator called Maria[6] and (ii) a real
network simulator GTNetS[9]. Maria executes the descrip-
tions of service node behavior which are derived by our Perl
toolset explained at the beginning of this section. If it finds
a token in a communication place, it tells the transmission
requirement to GTNetS with the size of token(s). GTNetS
simulates a TCP-based overlay network and starts gener-
ating traffic according to the transmission requirement be-
tween two service nodes at packet level. When it finishes
the transmission, GTNetS tells the end of transmission to
Maria. Maria and GTNetS continue their operations coop-
eratively until Maria finds that no executable transitions is
left.

 40

 50

 60

 70

 80

 90

 100

 0 0.002 0.004 0.006 0.008 0.01

A
ve

ra
ge

 o
f M

ax
im

um
 C

ha
nn

el
 U

til
iz

at
io

n(
%

)

Arrival Ratio of User Requests

Optimized Allocation
Manual Allocation

Random Allocation
 0

 500

 1000

 1500

 2000

 2500

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055

A
ve

ra
ge

 o
f M

ax
im

um
 R

es
po

ns
e

T
im

e
(s

ec
.)

Arrival Ratio of User Requests

Optimized Allocation
Manual Allocation

Random Allocation
 0

 1

 2

 3

 4

 5

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055

A
ve

ra
ge

 o
f M

ax
im

um
 L

oa
d

of
 S

er
vi

ce
 N

od
es

Arrival Ratio of User Requests

Optimized Allocation
Manual Allocation

Random Allocation

(a) Maximum channel utilization (b) Maximum response time (c) Maximum load of service nodes

Figure 5: Service costs of example service (vs. user request interval).

From the given service and five service nodes, we have
derived, using our Perl toolset, three different sets of ser-
vice node behavior descriptions optimized using three cost
functions introduced in Section 3; (i) maximum channel uti-
lization, (ii) maximum response time, and (iii) maximum
load of service nodes. We have assumed 0.01 arrival ratio
of service user requests to determine MT in the cost func-
tions. Then we have measured, using our simulator toolset,
the average values of those metrics, varying the arrival ra-
tios of service users’ requests. We have given random values
between 70 Mbps and 130 Mbps as the physical link capac-
ity. We have used TCP as the overlay channels, and set
each overlay channel capacity to the minimum capacity of
links on the channel. We have set the sizes of contents as
follows; Raw video file has 5 Gbytes and its correspond-
ing formats are 4 Gbytes (DV), 1 Gbyte (MPEG2) and 128
Mbytes (MPEG4). In a multiplexed stream, we assume that
the ratio of video:audio is 9:1.

For comparison, we have derived additional two sets of
service node behavior descriptions for each cost function.
(i) “random allocation” where video contents are allocated
to service nodes with enough computation power and com-
munication capacities and then other service components
are allocated randomly. We obtain the best solution from
10 trials. (ii) “manual allocation” which is a manually well-
thought-out allocation where we repeat trail and error so
that sequences of service components can be executed with-
out communicating with other service nodes as long as pos-
sible.

Fig. 5 shows the results. We note that the definition of
the maximum channel utilization in Fig. 5(a) is different
from the one in Section 3. We have measured in Fig. 5(a)
the ratio of the bandwidth that is actually used, to the ca-
pacity of the channel, since it is a more natural metric to
represent network performance. We can see that even under
high arrival ratios of user requests, all the costs of the opti-
mized service have the advantage over the random/manual
allocations. In other words, even though the optimization
is done using some (high) arrival ratio of user requests, the
result under any ratio shows our advantage. The time for
deriving optimized allocations was a few minutes in most
cases.

5. CONCLUSION
In this paper, we have proposed an approach to design op-

timized service overlay networks. The introduction and eval-
uation of more adaptive QoS control mechanism depending

on fluctuation of usable bandwidth of the overlay channels
is part of our future work.

6. REFERENCES
[1] Z. Duan, Z.-L. Zhang, and Y. Hou. Service overlay

networks: SLA, QoS, and bandwidth provisioning.
IEEE/ACM Trans. on Networking, pages 870–883, 12 2003.

[2] X. Fu, W. Shi, A. Akkerman, and V. Karamcheti. CANS:
Composable, adaptive network services infrastructure. In
USENIX USITS 2001, 2001.

[3] H. J. Genrich and K. Lautenbach. System modeling with
high-level Petri nets. Theoretical Computer Science, 1981.

[4] S. Gribble, M. Welsh, R. Behren, E. Brewer, D. Culler,
N. Borisov, S. Czerwinski, R. Gummadi, J. Hill, A. Joseph,
R. Katz, Z. Mao, S. Ross, and B. Zhao. The ninja
architecture for robust internet-scale systems and services.
Computer Networks, 2001.

[5] X. Gu, K. Nahrstedt, and B. Yu. Spidernet: An integrated
peer-to-peer service composition framework. In Proc. of
IEEE Int. Symp. on High-Performance Distributed
Computing (HPDC-13), 2004.

[6] M. Makela. Maria – The Modular Reachability Analyzer
for Algebraic System Nets –.
http://www.tcs.hut.fi/Software/maria/.

[7] T. Murata. Petri nets: Properties, analysis and
applications,. Proceedings of the IEEE, 77(4):541–580, Apr.
1989.

[8] B. Raman and R. H. Katz. Load balancing and stability
issues in algorithms for service composition. In Proc. of
IEEE INFOCOM 2003, 2003.

[9] G. F. Riley. The georgia tech network simulator. In Proc. of
ACM SIGCOMM Workshop on Models, Methods and Tools
for Reproducible Network Research, pages 5–12, 2003.

[10] S. Vieira and J. Liebeherr. Topology design for service
overlay networks with bandwidth guarantees. In Proc. of
IEEE IWQoS 2004, 2004.

[11] M. Wang, B. Li, and Z. Li. sFlow: Towards
resource-efficient and agile service federation in service
overlay networks. In Proc. of 24th Int. Conf. on Distributed
Computing Systems (ICDCS2004), 2004.

[12] D. Xu and X. Jiang. Towards an integrated multimedia
service hosting overlay. In Proc. of ACM Multimedia, 2004.

[13] D. Xu and K. Nahrstedt. Finding service paths in an
overlay media service proxy network. In Proc. of Int. Conf.
on Multimedia Computing and Networking 2002
(MMCN2002), 2002.

[14] H. Yamaguchi, K. El-Fakih, G. Bochmann, and
T. Higashino. Protocol sythesis and re-synthesis with
optimal allocation of resources based on extended Petri
nets. Distributed Computing, pages 21–35, 2 2003.

