
Design and Architecture of Cloud-based Mobile
Phone Sensing Middleware

Shunsuke Mori∗§, Yu-Chih Wang†, Takaaki Umedu∗ ‡,
Akihito Hiromori∗ ‡, Hirozumi Yamaguchi∗ ‡ and Teruo Higashino∗ ‡
∗Graduate School of Information Science and Technology, Osaka University
†Department of Computer Science National Tsing Hua University, Taiwan

‡Japan Science Technology and Agency, CREST
§Research Fellow of the Japan Society for the Promotion of Science

Abstract—
Recently smartphones are in widespread use and they

have large storage space and processing power. Thus, the
smartphone-based networks with cloud server can be used as a
cost-efficient sensing platform with high capable of processing
complex, cooperative tasks just in time. However, low level
implementation of cloud-based mobile phone applications
needs a lot of human efforts, and has a considerable gap
with high-level requirement given by application developers.
To fill the gap, we propose a support middleware to execute
cloud-based mobile sensing applications. Since we have pro-
posed in our previous work, a language to describe high-level
specification of cooperative applications on WSN, we extend
the concept to manage and control multiple smartphones that
participate in the system. We have shown some example
descriptions of high-level specifications and have implemented
the prototype system to confirm its usefulness.

I. I NTRODUCTION

Recently mobile phones such as smartphones are in
widespread use and have high functionality with multiple
sensors. Therefore they can be used as sensing devices, using
much richer storage space and processing power than net-
worked sensor nodes in WSN, which are cheaper and simpler
for massive deployment. Since their features enable to sense
many types of data at various location wherever human can
visit, useful information such as crowd of walking people,
air condition and pollution in human-living area and real-time
public transportation information can be obtained if a large
number of mobile phones can participate in sensing activities.
However, it is not an easy task to manage, organize and
control a large number of mobile phones and a large volume
of sensor readings to accomplish a given task. Although
cloud-based solution is a reasonable option to store data, we
still need software-support to accomplish such complex tasks
that involve particular mobile phones at particular time and
locations and to have those mobile phones under control. An
example sensing scenario is a real-time public transportation
location system. Bus passengers at a bus stop may want to
know real-time location of the bus, and it can be estimated
by the collective GPS traces of some passengers on the bus.
To implement this, we need to identify mobile phone users on

the bus by finding a set of GPS traces moving together along
the bus route and stopping at bus stops. A naive approach
is to collect all the traces from all the users, which is too
unrealistic due to privacy concern. Therefore, we need a
mechanism to send a request including time and location
conditions toward mobile users to ask the corresponding users
(i.e. bus passengers) to participate in this collaborative task
and provide their GPS traces. However, few approach has been
considered to achieve this requirement.

In this paper, we propose a middleware to support mo-
bile phone cooperative sensing with a cloud server. Since
we have designed in our previous work a methodology to
support design and development of collaborative WSN appli-
cations [1], we use the basic high-level specification language
specification part to describe the behavior of whole sensing
system. However, it is very different from [1] in terms of
the target architecture where we need to tackle (i) cloud-
server architecture and (ii) mobility into consideration, while
[1] assumes homogeneous, decentralized architecture without
centralized servers. The middleware to achieve the mobile
phone cooperative sensing consists of applications on mobile
phones and the server-side module. Each mobile phone and
the server communicate through WAN (e.g. 3G), and even
two mobile phones through short-range communication such
as Bluetooth or WiFi-direct.

Our method automatically translates the given sensing query
into server-side querieswhich need to involve multiple mobile
phones andphone-side querieswhich are executed by single
mobile phones. We provide a concept that hides the details
of network configuration, communication and processing in-
side the network but all the event occurrences are visible.
The sensing query contains time, location and network-based
constraints (conditions) and their processing. The process to
achieve the given sensing query is very complex since it
requires cooperation among mobile phones and servers. Thus,
our method hides the physical placement of mobile phones and
enables to execute cooperative sensing specified by abstract
query descriptions. The proposed method reduces the effort to
design and implementation of complex cooperation protocols
by this developer-friendly form of behavior specifications
format.

We provide a set of event sensing and communication

2012 IEEE Second Symposium on Network Cloud Computing and Applications

978-0-7695-4943-9/12 $26.00 © 2012 IEEE

DOI 10.1109/NCCA.2012.12

102

2012 IEEE Second Symposium on Network Cloud Computing and Applications

978-0-7695-4943-9/12 $26.00 © 2012 IEEE

DOI 10.1109/NCCA.2012.12

102

primitives to achieve the given sensing query in the networks.
Especially, since the proposed method is extended for mobile
phone sensing, we have designed interface and mechanisms
to handle mobility and human-mediate processes. Mobility
predicates enables to handle mobility conditions about ve-
locities, trajectories and so on. Opt-in predicates enables to
human-mediate sensing to ask owners to work for sensing.
For example, an owner of mobile phone is required to take a
video from the opt-in interface and he takes the video if he
agrees with it.

The following simple crowd sensing example helps to un-
derstand the concept; each mobile phone sends beacon to each
other and thus can detect neighbors. When a crowded situation
is detected from the number of neighbors, the system reacts
and starts sampling the neighbor count of the surroundings.
Based on the sample readings, the system predicts the crowded
area and informs to users. This system requires mobile phones
collaboration to obtain samples from appropriate location at
required intervals.The proposed scheme allows us to write the
system in a simple form that consists of three steps, (i) start
sampling on detection with required density and intervals,
(ii) crowd prediction on obtaining enough samples and (iii)
notification, without being aware of physical configuration
of mobile phones and the server. We have shown some
examples of mobile phone sensing system by our proposed
method to show its usefulness. We have also demonstrated the
performance of our proposed method in terms of successful
data collection and generated packet to validate the quality of
processing the given sensing query.

II. RELATED WORK

Several approaches have been presented so far that support
the entire process of design and development for WSNs [2],
[3]. Liu et.al [2] have proposed a method to break a given
single program down into several pieces that are executed
by multiple nodes in ad-hoc networks. MacroLab [3] can
also derive distributed codes from a given single program,
and the developers can concentrate on designing policies to
collect sensor readings and manipulate them. Ref. [4] has
designed a framework in which a task mapping problem
can be abstracted to mathematical formulations and tasks
generated from the formulations are mapped to sensor nodes.
However, the above approaches do not provide the concept
of design support for cooperative event processing with time-
, location- or network-dependent conditions. In this context,
more relevant approaches with ours are Refs. [5], [6]. In
particular, [6] proposes a set based programming approach
where a query can be given by a set of nodes, a set of sensor
values and even their combination. However, [6] basically
adopts a node-centric view of programming, while we allow
a node-independent approach where a specification can be
fully-independent of nodes and networks including neighbors
and sink nodes (our scheme allows higher abstraction in other
words).

On the other hand, there are some approaches of mobile
phone sensing for several purposes. For example, Ear-phone

[7] proposes design of a system for noise mapping and a
method to recover the noise map from incomplete and random
samples obtaind by smartphones. CSN [8] is a classification
system for human activity recognition by providing a unique
classifier tuned for each user. The system exploits crowd-
sourcing to extract inter-person similarity. However, these
researches are designed to support mobile phone sensing for
particular purposes.

Some approaches are intended to support development of
mobile phone sensing applications so that developers can
develop such applications easier. Kobe [9] is a tool that
aids mobile classifier development and provides a SQL-like
interface for sensor data classification which can be used for
mobile applications development. EEMSS [10] is an energy
efficient mobile sensing system and provides a hierarchical
sensor management scheme that specifies a particular sensing
criteria and each user state in an XML-format description.
Ref [11] proposes a cloud-based integrated framework for
mobile phone sensing. This framework is designed as a part
of cloud infrastructure, which coordinates a large number of
mobile phone users and applications. Medusa [12] is a novel
programming framework for crowd-sensing that manages not
only computer resources but also human resources by auditing
user acknowledgement and giving monetary incentives.

Compared with the above approaches, our contribution is
to provide a middleware that supports higher level abstraction
for mobile phone sensing. Query developers can specify time-
, location- and topology-based conditions to choose a group
of mobile node that should participate in the mobile phone
sensing task. The developers are not necessary to be aware
of physical locations of mobile phones and the middleware
can find such a group that accomplishes the given query. In
this context, we believe this has a novel concept of supporting
distributed query executions.

III. A PPROACHOVERVIEW

A. Middleware Architecture

In the proposed method, a mobile phone sensing system is
defined to collect sensor data matched with given queries from
mobile phones. Thus, this system should satisfy the following
requirements.

• To reduce the complexity of sensor data and node man-
agement, the system enables to select nodes abstractly by
conditions of time, location and sensor data attributes.

• To avoid large consumption of device energy and wire-
less bandwidth and concentration of traffic and process
load, the system should communicate with fewer nodes
while obtaining enough data. (Thus, processes which are
executed by all nodes should be avoided.)

• To detect conditions concerning multiple nodes, the sys-
tem executes collaborative processing by nodes and the
server.

Fig.1 shows an image of the mobile phone sensing system
by our proposed middleware for these requirements. This
system is organized by the server on the cloud and multiple

103103

Sensing Query

(e.g.) Get Density

Information from Area A

Area A
Mobile phones

Server

Bluetooth,

WiFi-direct etc.

Required data

Phone-side queries

High Middle

Collected Data

(e.g.) Density Information

Fig. 1. Mobile Sensing System Architecture

Query

Middleware

Network

Infrastructure

Smartphone

Sensing

Application

Smartphone

Hardware

Smartphone

OS

Node

Query

Smartphone

Sensing

Application

Smartphone

Hardware

Smartphone

OS

Node

Query

Server

Sensing

Management

Program

Server

Hardware

Server

OS

Server

Query

Gateway

Query

IF

Sensing

Query

Input

Distribution

Cooperation

Fig. 2. Proposal Middleware architecture

mobile phones and it enables cooperative sensing by their
collaboration. A requestor gives a query, which contains a
abstracted requirement for mobile phone sensing such as
getting density information of a certain area, to the server
and the server distribute the query to mobile phones. Each
mobile phone determines whether it participates the sensing
or not by itself to reduce the probability to upload waste data.
When it participates, it executes sensing and uploading data to
the server. The server analyzes the data uploaded by mobile
phones to extract information. In addition, sometimes it selects
mobile phones based on the analyzed data to satisfy the more
complex queries concerning multiple nodes. These processes
satisfy the above requirement.

Fig.2 is the architecture of our proposed middleware to real-
ize such systems. The middleware is composed of the program
on the server and the application on each mobile phone. The
collaboration between the mobile phones and the server is
achieved by communication through WAN (e.g. 3G) and the
collaboration among mobile phones is achieved by short-range
communication such as Bluetooth or WiFi-direct. The server
program provides functions for distributing queries, analyzing
uploaded data, managing each mobile phone, and selecting
some mobile phone to participate the more complex sensing
based on analyzed data. The applications on each mobile
phone has functions such as determinating to participate the
sensing, sensing according to the query information, uploading
the sensing data to the server. The functions provided by this
middleware enable such mobile phone sensing.

� �
nodegroup CrowdDetector

condition :
TestEach (neighborCount, ">10")
&& InFloatCircle (100)
&& Size (30, INFINITY)

action :
centroid = GetCentroid ()

nodegroup SamplingSpot
condition :

InGeoCircle (CrowdDetector.centroid, 200)
action :

OutputData (
GetSamplingDataSelect (

neighborCount, 1min, 10min, 3))� �
Fig. 3. A Query Description of Crowded Sensing

B. Query Description Outline

Our method can execute sensing on each mobile phone
(hereinafter called node) and the server for a given sensing
query that describes actions to be taken by a group of nodes
and conditions to be examined before the actions. Requestors
can easily describe systems by specifying such conditions
that should be checked by cooperation of nodes. We show
a simple but essential example in Fig. 3 where a group of
nodes that satisfy the following conditions is defined as the
first group to detect a crowd; (1) all the nodes in the group
have detected numbers of neighbors higher than 10, (2) they
are located in a circle whose radius is 100m and whose center
is one of given positions of intersections, and (3) the size of
the group is more 30 nodes (we explain these predicates in
Section IV, but readers may refer to Table I). In addition, in
order to sample information of the crowd, the second, larger
group of nodes that contains the previous group having the
similar center with the previous group (CrowdDetector) but
with larger radius 200m is defined. The nodes in the second
group (SamplingSpot) sample and upload numbers of neighbor
as crowd information. In this way, conditions on geometry,
sensing data values and their manipulations can be written in
our query description.

However, such a sensing query is not easy to satisfy since
checking conditions and executing actions need cooperative
operations among nodes. For example, in order to check a
condition on sensing data, (i) a node group needs to be
organized, (ii) the sensing data needs to be collected onto
the server, and (iii) it needs to be checked if the condition
is met or not. The action should be executed if the condition
is satisfied, or the group is dismissed.

Thus, our method can automatically derive the single-node
and multi-node queries which are processed by cooperative
nodes and the server from given sensing queries. This hides
the details of node behavior, which are often complex, from the
developers. Therefore they can concentrate on system logic.

C. Distributed Execution on mobile phones and the Server

For a given sensing query described by a set of nodes with
pre-conditions and post-actions, we classify the predicates that
constitute the condition into two categories, single-node pred-
icates and multi-node predicates. An example of single-node

104104

predicate isTestEachthat checks if variable on each node sat-
isfies a given condition (seeTestEach(neighborCount, “> 10”)
in Fig. 3). Meanwhile, bothInFloatCircle(100) andSize(30,
INFINITY) are multi-node predicates since they cannot be
examined by single nodes. For example,InFloatCircle(100)
needs distance calculation for every pair of nodes, meaning
that it can be checked only when a group of nodes is given.
Considering this fact, we take the following strategy; Firstly,
from the given sensing query, the server generate single-node
queries which contain information of single-node predicates
in it and multi-node queries which contain information of
multi-node predicates in it. Each node contacts to the server
and get single-node queries periodically. We let each node
periodically check single-node predicates, and let the node be
a potential constitute of the group if it satisfies the conditions.
If a node becomes a potential constitute of the group, it report
to the server. The server constructs a node group based on
these reports. Then the data values to check the multi-node
predicates are collected to the server, and it checks if all
the multi-node predicates are satisfied or not. If true, those
nodes take actions as specified. Moreover, we allow describing
conditions of groups that depend on some other groups. For
example, the second group (SamplingSpot) in Fig. 3) is such
a group that refers to the “center” ofCrowdDetectoras a part
of its conditions. In this case, the centroid of coordinates of
nodes inCrowdDetectorhas been calculated by the server to
prepare for creation ofSamplingSpot, and the information is
distributed to potential constitutes ofSamplingSpot(in this
case, all the nodes). by the server in two ways. (1) polling
by each node or (2) broadcasting by some nodes which are
nearby the target location. broadcast

In summary, each node needs periodically to check the
single-node conditions of each group, and then report the result
and some data to the server. The server forms the nodes whose
report is received into a potential group with nodes which
also satisfy the same conditions. During the server collects
all the data necessary to check multi-node conditions. Then it
actually checks the conditions and executes the post-actions
in cooperation with the nodes. During the process, it prepares
and calculates the data for the other groups’ conditions if any.

IV. L ANGUAGE AND ALGORITHM DETAILS

A. Query Description Language

A sensing query consists of two types of profiles,node
profilesandnodegroup profiles.

The node profilesdefine the attributes of sensor nodes. For
example, if a WSN consists of wireless sensor nodes and base
stations, then we prepare two profiles that correspond to them.
In their profiles, local variables (storing sensor data and so
on) and methods they hold are defined. We omit example
descriptions here because they just consist of definitions of
variables and functions.

In nodegroup profile, each block of description starts with
a keywordnodegroup (words highlighted by bold fonts are
reserved words hereafter). Conceptually, this corresponds to a
group of nodes that cooperatively execute tasks. Developers

can define pre-conditions withcondition keyword and post-
actions withaction keyword. The condition part must be a
logical formula using predefinedsingle-nodeand/or multi-
nodepredicates, and the action part must be a list of functions
(or procedures).

The example query description of a crowd sensing system
shown in Sec.III-B (Fig. 3) is an example of formal descrip-
tion. CrowdDetectorandSamplingSpotare nodegroup defini-
tions blocks. InCrowdDetector, three predicates are speficied
in the condition part.TestEachis a single-node predicate,
and InFloatCircle and Sizeare multi-node predicates. As we
explained in the previous section, groups may refer to other
groups by directly specifying their group names. For example,
SamplingSpotgroup refers to theCrowdDetectorgroup. Since
the node groups defined byCrowdDetectormay not be unique
(i.e. there may appear multiple groups),CrowdDetector is
assumed to be the reference to the first-generated group in our
language definition. The condition ofSamplingSpotcontains
a single-node predicateInGeoCircle with 2 parameters. In
the sensing description, the value of 1st paramter has been
determined inCrowdDetectorgroup byGetCentroidfunctions.

Tables I and II show the list of predicates and functions,
respectively. As for the predicate table, we add how the
predicates are examined in distributed environment in the
last column.Single means it can be tested by each node
independently (i.e. single-node predicates), whileMulti means
cooperation among nodes is necessary (i.e. multi-node pred-
icates). For example,InGeoCirclecan be examined by each
node independently based on its own coordinates and the given
center and radius information. On the other hand,InFloatCir-
cle needs to know the coordinates of all the nodes in the group
since it does not relate to the specific geographical area but to
relative locations among nodes. These attributes will be used
in the execution algorithm in the following section. Due to
space limitation, we omit some of predicates and functions,
and the complete list can be found in [13].

Additionally, the proposed method is designed for mobile
phone sensing. Thus, we have designed some mobile-device-
specific predicates. For example,KeepUpWithCircleis a mo-
bility predicates which is evaluated based on the device’s
trajectory, andAllowsToProvideVideois a opt-in predicates
which requires the owner of the device to determine to take
video for sensing through the GUI of the device. These type
predicates are suitable for mobile phone sensing systems.

B. Mobile Phone Sensing Execution

In this subsection, we explain how to execute a given
sensing query on each node and server. As shown in Section
III, each node and server repeats the following step sequence;
(i) query generation from given sensing queries, (ii) periodic
polling to get single node query and notification, (iii) periodic
sensing from sensors, (iv) periodic evaluation of single-node
predicates, (v) data collection and potential group generation
(vi) evaluation of multi-node predicates and (vii) execution
of actions, to check if conditions are satisfied or not, and to
execute actions if satisfied.

105105

TABLE I
PREDICATES FORCONDITION PART (EXCERPT)

Type Predinate Description Examined
by

General TestEach (v, exp) true iff variablev satisfiesexp at
every node

Single

General DurationTestEach (v,
exp, t)

true iff variablev satisfiesexp at
every node for the durationt

Single

Location InGeoCircle (c,r) true iff all the nodes in the group
are within the circle centered atc
with radiusr

Single

Topology InFloatCircle (d) true iff all the nodes in the group
are within a circle with diameterd

Multi

Location InGeoRectangle (c1,
c2)

true iff all the nodes in the group
are within the rectangle determined
by two coordinatesc1 andc2

Single

Topology InFloatRectangle (w,
h)

true iff all the nodes in the group
are within the rectangle with width
w and heighth

Multi

Location InGeoStreet (c,r) true iff all the nodes in the group
are in a street atc and within dis-
tancer from c

Single

Topology InFloatStreet (d) true iff all the nodes in the group
are in a street and within distance
d

Multi

Topology Size (min, max) true iff the number of nodes in the
group is in [min, max]

Multi

Mobility KeepUpWithCircle
(d, t)

true iff all the nodes in the group
keep up within a circle with diam-
eterd for t seconds

Multi

Mobility IsFollowingPath (p,
t)

true iff all the nodes in the group
follow the pathp in this t seconds

Single

Opt-In AllowsToProvideVideo
(m, c)

true iff owners of all the nodes in
the group show the captionc and
allow to take and upload a movie
m

Single

TABLE II
FUNCTIONS FORVALUES AND ACTIONS (EXCERPT)

Function Description

Average(v) Calculate the average of variablesp among all the nodes
in the group

AverageSelect(v, n) Calculate the average of variablesv among randomly-
chosenn or more nodes in the group

GetCentroid() Calculate the centroid of the coordinates of nodes in the
group

GetDiameter() Calculate the maximum distance between nodes in the
group

GetVelocity() Calculate the average velocity of all nodes in the group
GetTrajectory(t) Calculate the the pastt trajectory of the centroid of the

coordinates of nodes in the group
Sleep(t) sleep int
OutputData(d) Let the server outputd
ExecuteEach(f) Let each node execute functionf
GetVelocity() Calculate the velocity of the centroid of the coordinates

of nodes in the groupf
OutputSamplingData
(d, i, t)

Let the server outputd for t every i

GetSamplingDataSelect
(d, i, t, n)

Let n nodes in the group uploadd for t everyi and let
the server to output the uploaded data

(i) Query generation from given sensing queries:In this
step, the developer give a sensing query of sensing to the server
and the server generates a phone-side query and a server-
side query. Each sensing query contains single-node predicates
and multi-node predicates, respectively. Single-node predicates
should be processed by each node and multi-node predicates
should be processed by the server since it can collect and
manage data of multi nodes. Thus, each sensing query is
divided into a part of single-node predicates and that of multi-
node predicates. The former becomes a phone-side query and
the latter becomes a server-side query.

(ii) Periodic polling to get single node query and no-
tification: Queries and notifications (discussed later) should

be distributed to all nodes in the field. But broadcasting to
all nodes causes concentrations of a large amount of data
traffics on the server and frequency distribution causes a large
amount of energy consumption on each node. Thus, the server
distributes them by a polling strategy. Each node asks the
server if there are phone-side queries and notifications for
every intervalT . The server sends them to the node if they
are updated.

(iii) Periodic sensing from sensors:In this step, each
node executes routine tasks like periodic reading from its
sensors, which are used in the given single-node and server-
side queries. Each node periodically measures data shown in
the given sensing query as variables so that the code can refer
to these data at steps (iv), (vi) and (vii). Especially, each node
stores the history of its position since its trajectory may be
required for single-node predicates.

(iv) Periodic evaluation of single-node predicates:In this
step, each node checks if single-node predicates in each group
are satisfied or not. Since each predicate can be examined
by single node or multiple nodes as indicated in Table I, the
code checks if only single-node predicates are satisfied or not.
If necessary, the code manipulates local variables according
to equations such as addition, subtraction and multiplication.
If all other single-node predicates are satisfied but opt-in
predicates are not, each node asks its owner to determine to
work for sensing and they becomes true if the owner agree.
If the predicates are met, the node continues executing the
following steps since the node may be able to meet all the
conditions specified in the group (this is checked later in step
(vi)). Otherwise, the code goes to step (i) again. If all the
predicates in the group condition are single-node predicates,
our method skips the steps from (v) and (vi).

(v) Data collection and potential group generation:In
this step, each node reports the result of checking the single-
node predicates and its data for checking multi-node predi-
cates. The server receives reports from nodes and organized
the sender nodes as a potential node group after a certain
interval from receiving the first report.

In addition, our proposed method also provides tree-based
data collection protocol by using ad-hoc communication facil-
ity (like Zigbee or Bluetooth) for reduction of the communica-
tion cost of data uploading. Nodes which satisfy single-node
predicates construct a tree and they collect data to root node
through the tree. The root node uploads the collected data
to the server. We can select direct uploading or tree-based
uploading.

(vi) Evaluation of multi-node predicates:Once the server
collects all data required for checking the rest of the predicates,
it can know all the nodes which meet the condition and become
true members of the group. In this step, multiple groups may
be created according to a definition of a group because there
are many combinations of nodes that can satisfy the given
multi-node predicates. For example, if one of the predicates
is Size(8, 10), at least three different groups with 8, 9 and
10 nodes can be considered. The server generates groups with
the calculated average oftemperaturevariables by using a pre-

106106

defined functionGenerateSetswhich derives all possible sets
of nodes satisfying a given condition. Thus, the server sends
a special packet to nodes, which do not satisfy the condition,
to eliminates and also generates several sets of nodes that can
meet the multi-node predicates from the rest of nodes. These
derived sets become groups specified in the given sensing
query.

(vii) Execution of actions:After organizing groups, the
server executes actions in the given specification. Besides, if
the group is accessed by another group, the server has to
notify the values of variables to those nodes which need them.
Therefore, it not only executes the actions but also notifies
those data. This notification is performed in two ways. If
the group of nodes which accesses those values are explicitly
identified at that moment and if the locations of those nodes
are known, the notification can be delivered to the location
via geocasting from a certain node in the group to reduce
redundant messages. Otherwise, the notification is distributed
by polling of each node in step (ii).

V. PERFORMANCEEVALUATION

We first demonstrates the benefit from our method in
terms of developers design effort-saving. This is done by
introducing example systems of our proposed method. Then
we measure the communication performance in order to show
proposed middleware works well by simulations. In addition,
to demonstrate our method is available in real environment
and provides useful interface for developers, we performed
experimentations in real environment.

A. System Examples

To show that our proposed method have a system as
a development environment for mobile phone sensing, we
introduce two systems.

The first one is simple and similar with the crowd detection
and alert system in Figs.3, but it can present applicability of
our method to various systems. It is a traffic jam monitoring
system (Fig.4). If a traffic jam is occurred, some mobile phone
user takes videos of surrounding situation of the jam. This
system is useful to understand details of the traffic jam and
to support driver’s determination. If mobile phones are car-
mounted mode and detect a traffic jam by detecting that their
velocity are continuously low, then the mobile phones in the
surroundings are organized to assign tasks to taking videos
and upload them. Each node has a facility to do it, but we
would like to limit the number of mobile phones to upload
data to only 10 node in the group since duplication of video
uploading means waste of computation and communication
resources. There are two groups calledTrafficJamSpotand
MonitoringStreetwhich represent the first-detectors of traffic
jam, and the group of mobile phones in its surrounding area.

Another example is a public transportation monitoring sys-
tem. For a public transportation (e.g.bus), each of passengers
who ride on it has its mobile phone. If the information of
the transportation is required, the system on the server finds

� �
nodegroup TrafficJamSpot

condition :
InFloatStreet (500m)
&& TestEach (mode, "==CAR_MOUNTED")
&& DurationTestEach (velocity, "<20kmph", 3min)

action :
centroid = GetCentroid ()

nodegroup MonitoringStreet
condition :

InGeoCircle (Initiator.centroid, 2km)
&& AllowsToProvideVideo

action :
OutputData (

GetSamplingDataSelect (movie, 1min, 1min, 10))� �
Fig. 4. An Query Description of Traffic Jam Monitoring� �

nodegroup TransportationPassengers
condition :

IsFollowingPath (TRANSPOTATION_PATH, 10min)
&& KeepUpWithCircle (10m, 10min);

action :
OutputData (

GetSamplingDataSelect (position, 1min, 10min, 2))� �
Fig. 5. An Query Description of Public Transportation Monitoring

passengers on it and collects real-time position data from them.
The sensing query is given in Fig. 5.

TransportationPassengersis a group of nodes which are
corresponding to passengers of transportation. The group
provides real-time position data. We assume nodes, which
follow the same path as the transportation and keep within
a certain distance between each node, as passengers of the
transportation. Thus, each node monitors its trajectory and, if
it follows the path, report it to the server. After the server
receives reports from some nodes, node groups whose nodes
keep their distance are organized and 10 nodes in the group is
selected to upload the real-time position to the server for 10
minutes.

These systems supported by our middleware are useful
example of mobile phones sensing. These demonstration show
broad utility of the middleware.

B. Performance Analysis of the Middleware

1) Performance Evaluation in Simulated Environments:
We have conducted simulation experiments to observe that
our middleware performs well. We have used the Scenargie
network simulator [14] version 1.4 where IEEE802.11g have
been used in the MAC and PHY layers as wireless wide area
network communication and all nodes can connect with the
server by this network. We have targeted the crowd detection
system and the simulation was performed for 50 seconds. The
size of the area was200m×200m and there are 4 cross point
(as shown in Fig.6). Nodes are moving at a constant speed 1
m/sec and a crowd detection event occurs in the intersection
at (150m, 150m) after 20 seconds. Nodes nearby the event
report it to the server and it sends request packet to nodes in
the target area.

To present that the middleware can achieve reasonable
performance levels, we have evaluated the following metrics.

107107

200

100

0 100 200

y (m)

x (m)

Crowd Detection Point

Fig. 6. Experiment Field

0

20

40

60

80

100

120

140

160

180

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

25 50 75 100 125 150 175 200

Number of

Nodes

Node

Coverage

Ratio

Target Area Radius (m)

Ideal Target

Grid Model

Fig. 7. Node Coverage Ratio

• Node coverage ratio, which is the ratio of the number
of actually-found nodes in the simulation to the number
of nodes to be found according to the query and node
deployment. In other words, it shows the “completeness”
of data collection.

• Number of packets, which is the total number of data and
control packets in the network layer.

In order to verify the performance in various environments,
we have prepared the scenario with 160 nodes which move
along the streets on the field.

Fig.7 show the node coverage ratios. In these graphs, the
number of nodes that are expected to be in the group is also
shown as bars. We can see that the ratios are very close to
1.0 in all the cases. This shows a certain level of scalability
to sense fields.

Finally, Fig. 8 shows the number of packets observed in
the network layer and ideal nodes to send data packets. The
number of packets grows as the radius of circles becomes
larger and shows slightly larger than the number of ideal nodes
in cases (less than “150 m”) . However, the growing tread is
similar to the number of ideal target nodes. From this fact, we
can say that our mobile phone sensing middleware can prevent
excessive traffic growth during the data collection phase.

The simulated evaluation shows the middleware works well
in the ideal environment. Our ongoing works includes more
realistic evaluation in various environments to show the utility.

2) Performance Evaluation in Real Environments:To show
practical utility of our middleware for mobile phone sensing,
we have implemented a prototype of mobile phone sensing

0

20

40

60

80

100

120

140

160

180

25 50 75 100 125 150 175 200

Number of

Packets

Target Area Radius (m)

Control

Data

Ideal Target

Fig. 8. The number of L2 packets

TABLE III
PERFORMANCEEVALUATION IN REAL ENVIRONMENT EXPERIMENTATION

R 20 30 40 50

Node Coverage Ratios 1.00 0.88 0.73 0.84
Delay (Sec) 13.963 17.812 21.443 20.598

TABLE IV
THE NUMBER OF GENERATED PACKETS IN REAL ENVIRONMENT

EXPERIMENTATION

R 20 30 40 50

Control Packets 33 52 139 164
Data Packets 2 2 9 13

system and have evaluated its data collection performance in
real environment.

The prototype system is the crowd sensing system as shown
in Fig.3 to detect human locations in a certain region. This
system asks mobile phones in the region to report their
locations by sending queries to them. We have conducted the
experiments at a intersection in a campus of Osaka University
(Fig.10). 12 mobiles phones are placed in the intersection and
report their data by multi-hop forwarding if they are in a target
circle. We have evaluated the performance of the system with
several target circles, whose radii are 20m, 30m, 40m, and
50m. In our framework, it is easy to change such conditions
since mobiles phones are controlled by queries and the queries
are distributed to the mobile phones for each sensing.

The simulation results are shown in a GUI, which enables
to monitor mobile phones and their locations easily and helps
to manage and operate them (Fig.9). We have evaluated node
coverage ratios and delays of location collection in the same
way as Sec.V-B1. Table III shows the results. We can see that
node coverage ratios are higher than 70% in all scenarios.
We can see that the delay becomes large as R becomes large.
This is because it takes more hops to deliver locations to the
cloud server. Table IV shows the number of packets in the
system. We can see that the number of control packets increase
linearly. As shown in above experiments, our middleware
supports not only mobile sensing itself but also analyzing
the system performance. We believe that our approach can
contribute to reduce whole cost of mobile sensing.

108108

Fig. 9. Screen Shot of An Example Application on Android

Fig. 10. Field of Experimentation

VI. CONCLUSION

In this paper, we propose a middleware to support mobile
phone cooperative sensing with a cloud server. We have de-
signed a language to describe high-level specification of such
systems where we can specify the whole system’s behavior
from developer-friendly viewpoint based on group of node
concept, and the middleware to achieve the mobile phone
cooperative sensing consists of apps on mobile phones and
the server-side module. Our method automatically translates
the given sensing query into a sequence of queries which are
executed by the server and mobile phones. We provide a set
of event sensing and communication primitives to achieve the
given specification in the networks since we have designed in
our previous work, a methodology to support design and devel-
opment of collaborative WSN applications [1]. However, it is
very different from [1] in terms of the target architecture where
we need to take (i) cloud-server architecture and (ii) mobility
into consideration, while [1] assumes homogeneous, decen-
tralized architecture without management by cloud-server. In
this viewpoint, we believe this is the first approach to tackle
such problems. We have shown some example descriptions
of practical systems and have evaluated the quality of our
proposed method in the experiments.

Our ongoing work includes applying the proposed method
to various situations such as pedestrian crowds, car traffic, train
passengers, and mixture of them. In those platforms, we need
to consider mobility, neighbor discovery and security issues
keeping the architecture limitation in mind. Thus, we have to
provide various methods corresponding to various situations.

REFERENCES

[1] S. Mori, T. Umedu, A. Hiromori, H. Yamaguchi, and T. Higashino,
“Data-Centric Programming Environment for Cooperative Applications
in WSN,” submitted.

[2] H. Liu, T. Roeder, K. Walsh, R. Barr, and E. G. Sirer, “Design and
implementation of a single system image operating system for ad hoc
networks,” inProceedings of the 3rd international conference on Mobile
systems, applications, and services, ser. MobiSys ’05. New York, NY,
USA: ACM, 2005, pp. 149–162.

[3] T. W. Hnat, T. I. Sookoor, P. Hooimeijer, W. Weimer, and K. Whitehouse,
“Macrolab: a vector-based macroprogramming framework for cyber-
physical systems,” inProceedings of the 6th ACM conference on
Embedded network sensor systems, ser. SenSys ’08. New York, NY,
USA: ACM, 2008, pp. 225–238.

[4] A. Pathak and V. Prasanna, “Energy-efficient task mapping for data-
driven sensor network macroprogramming,” inDistributed Computing in
Sensor Systems, ser. Lecture Notes in Computer Science, S. Nikoletseas,
B. Chlebus, D. Johnson, and B. Krishnamachari, Eds. Springer Berlin
/ Heidelberg, 2008, vol. 5067, pp. 516–524.

[5] K. Whitehouse, C. Sharp, E. Brewer, and D. Culler, “Hood: a neigh-
borhood abstraction for sensor networks,” inProceedings of the 2nd
international conference on Mobile systems, applications, and services,
ser. MobiSys ’04. New York, NY, USA: ACM, 2004, pp. 99–110.

[6] M. Hossain, A. Alim Al Islam, M. Kulkarni, and V. Raghunathan, “µsetl:
A set based programming abstraction for wireless sensor networks,” in
Information Processing in Sensor Networks (IPSN), 2011 10th Interna-
tional Conference on, april 2011, pp. 354 –365.

[7] R. K. Rana, C. T. Chou, S. S. Kanhere, N. Bulusu, and W. Hu,
“Ear-phone: an end-to-end participatory urban noise mapping system,”
in Proceedings of the 9th ACM/IEEE International Conference on
Information Processing in Sensor Networks, ser. IPSN ’10. New
York, NY, USA: ACM, 2010, pp. 105–116. [Online]. Available:
http://doi.acm.org/10.1145/1791212.1791226

[8] N. D. Lane, Y. Xu, H. Lu, S. Hu, T. Choudhury, A. T. Campbell, and
F. Zhao, “Enabling large-scale human activity inference on smartphones
using community similarity networks (csn),” inProceedings of the 13th
international conference on Ubiquitous computing, ser. UbiComp ’11.
New York, NY, USA: ACM, 2011, pp. 355–364. [Online]. Available:
http://doi.acm.org/10.1145/2030112.2030160

[9] D. Chu, N. D. Lane, T. T.-T. Lai, C. Pang, X. Meng, Q. Guo,
F. Li, and F. Zhao, “Balancing energy, latency and accuracy for
mobile sensor data classification,” inProceedings of the 9th ACM
Conference on Embedded Networked Sensor Systems, ser. SenSys ’11.
New York, NY, USA: ACM, 2011, pp. 54–67. [Online]. Available:
http://doi.acm.org/10.1145/2070942.2070949

[10] Y. Wang, J. Lin, M. Annavaram, Q. A. Jacobson, J. Hong, B. Krish-
namachari, and N. Sadeh, “A framework of energy efficient mobile
sensing for automatic user state recognition,” inProceedings of the 7th
international conference on Mobile systems, applications, and services,
ser. MobiSys ’09. New York, NY, USA: ACM, 2009, pp. 179–192.

[11] R. Fakoor, M. Raj, A. Nazi, M. Di Francesco, and S. K. Das,
“An integrated cloud-based framework for mobile phone sensing,” in
Proceedings of the first edition of the MCC workshop on Mobile cloud
computing, ser. MCC ’12. New York, NY, USA: ACM, 2012, pp. 47–
52. [Online]. Available: http://doi.acm.org/10.1145/2342509.2342520

[12] M.-R. Ra, B. Liu, T. F. La Porta, and R. Govindan, “Medusa: a pro-
gramming framework for crowd-sensing applications,” inProceedings
of the 10th international conference on Mobile systems, applications,
and services, ser. MobiSys ’12. New York, NY, USA: ACM, 2012, pp.
337–350.

[13] “D-sense web.” http://www-higashi.ist.osaka-u.ac.jp/software/WSN/D-
sense/.

[14] Space-Time Engineering, “Scenargie base simulator,”
http://www.spacetime-eng.com/.

109109

