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ABSTRACT
In this paper, we propose a new trajectory estimation method
named TRADE (TRAjectory estimation in DEcentralized
way). TRADE is a range-free localization algorithm in fully
decentralized mobile ad hoc networks. In TRADE, each
mobile node periodically transmits messages containing its
estimated trajectory information, and re-computes its own
trajectory using those from its neighbors. This information
exchange considerably contributes to improvement of the po-
sition accuracy. Furthermore, we give the optimal design of
the protocol based on the analysis of the algorithm property.
Through the analysis, we consider how much trajectory in-
formation should be exchanged among nodes to estimate the
position within a certain error range in the protocol design.
We have evaluated the position accuracy under various set-
tings, and have shown the effectiveness of the protocol in
the real world through two realistic application examples.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Distributed networks, Wireless com-
munication; C.2.4 [Computer-Communication Networks]:
Distributed Systems —Distributed applications

General Terms
Algorithms, Design

Keywords
trajectory estimation, mobile ad hoc network, localization,
range-free, decentralized algorithm

1. INTRODUCTION
In the future society where ubiquitous devices are widely

spreading, the location information of mobile devices is ex-
pected to be used for many ubiquitous services such as be-
havior analysis of humans, navigation, advertisement and
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location-aware services. Recently, many cellular phones and
car navigation systems have GPS receivers, but such ubiqui-
tous services are often provided in the situations where GPS
is not available such as indoor areas, underground areas and
complicated urban districts with a lot of buildings.

To provide location information to such services every-
where, location estimation using wireless communication de-
vices of mobile nodes has been considered (see Sec. 2). In
particular, “on-line” location estimation, which means real-
time and distributed location estimation, is required in many
situations. For example, when customers enter a huge shop-
ping mall, they might want to know the shops they have not
visited yet. Also, at stations with very complex structure,
passengers may need more intuitive route navigation.

In indoor object tracking techniques, camera based meth-
ods are often used for behavior analysis of pedestrians in
towns and for marketing in supermarkets (e.g., [3, 10]).
Since they are mainly designed not for real-time location-
aware services but for trace analysis purpose, they focus on
recognition and identification techniques like identifying a
single object using two cameras. Also, RFID based track-
ing techniques like Ref. [7] have been proposed. However,
the cost to deploy and manage the RFID tags is not negli-
gible. In Ref. [4], we have proposed a method to estimate
trajectories of pedestrians. It is basically a range-free “off-
line” (i.e., centralized) method that localizes mobile nodes
using sparsely-deployed landmarks. However, such central-
ized techniques do not take into account computation and
communication overhead in general. Also, they cannot pro-
vide real-time services such as intuitive route/shop naviga-
tion. Therefore, real-time and decentralized position esti-
mation techniques that can work on mobile nodes would be
expected.

In this paper, we propose a new real-time position es-
timation method named TRADE (TRAjectory estimation
in DEcentralized way). Mobile nodes exchange their esti-
mated trajectory information with each other, and use the
information to update their own trajectory. This informa-
tion exchange considerably contributes to the improvement
of the accuracy of the trajectory estimation. TRADE is a
decentralized and autonomous protocol, and is therefore ro-
bust to mobility, appearance and disappearance of nodes.
The basic operation of each node in TRADE is to periodi-
cally transmit the latest trajectory information of itself (and
sometimes of its neighbors) on the wireless channel. Then,
based on the trajectory information received from its neigh-
bors, each node considers the constraints on the connectivity
with its neighbors, and updates its trajectory using a vector



that corrects the current position to satisfy the constraints.
This update process is very lightweight because each node
only computes this correction vector. By iterating this up-
date process among neighboring nodes interactively, their
estimated trajectories are gradually refined.

In addition, we give the optimal design of the protocol
based on the analysis of the algorithm property. In the
extreme case that each node collects complete information
about all the other nodes’ trajectories, the algorithm will
perform as a centralized one, but need considerable amount
of traffic. In order to find the truly effective information
to pursue certain accuracy with reasonable amount of traf-
fic, we give the analysis to determine how much trajectory
information should be exchanged among nodes.

We have evaluated the position accuracy by simulations
under various settings, and have shown the effectiveness of
our protocol through two realistic application examples.

2. RELATED WORK AND CONTRIBUTION
Many localization algorithms using ad hoc communica-

tion devices have been proposed. They use different types
of range measurement techniques such as RSSI and TDoA
[1, 8, 12]. Meanwhile, for localization of sensor nodes, where
each node has limited power supply and equipments due
to hardware costs and the network has a number of such
nodes, most algorithms only assume connectivity informa-
tion among nodes. The same situation may happen in lo-
calizing highly dynamic mobile nodes since it is difficult to
stably measure RSSI or time of signal arrival.

The localization methods are also distinguished by their
form of computation, “centralized” or “decentralized”. For
example, MDS-MAP [13] is a centralized localization that
calculates the relative positions of all the nodes based on
connectivity information by Multidimensional Scaling (MDS).
Similarly, DWMDS (Dynamic Weighted MDS) [2] uses move-
ment constraints in addition to the connectivity information,
and estimates the trajectories of mobile nodes. TRACKIE
[4] first estimates mobile nodes that were likely to move be-
tween landmarks straightly. Based on their estimated tra-
jectories, it estimates the trajectories of the other nodes.
Since these centralized algorithms use all the information
about connectivity between nodes and compute the trajec-
tories off-line, the estimation accuracy is usually better than
decentralized methods. In decentralized methods, the posi-
tion of each node is computed by the node itself or cooper-
ation with the other nodes. For example, APIT [5] assumes
a set of triangles formed by landmarks, checks whether a
node is located inside or outside of each triangle, and esti-
mates its location. Amorphous [11] and REP [9] assume that
location information is sent through multi-hop relay from
landmarks, and each node estimates its positions based on
hop counts from landmarks. In particular, REP first detects
holes in an isotropic sensor network, and then estimates the
distance between nodes accurately considering the holes. In
MCL [6], each mobile node manages its Area of Presence
(AoP) and refines its AoP whenever it encounters a land-
mark. In UPL[14], each mobile node estimates its AoP ac-
curately based on AoP received from its neighboring nodes
and obstacle information.

The contribution of this paper compared with the exist-
ing work is summarized as follows. (1) We provide a new
decentralized method to estimate the position of each node
in mobile ad hoc networks. The algorithm is fully decentral-
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Figure 1: Time intervals of nodes.

ized and autonomous, and is therefore robust to mobility,
appearance and disappearance of nodes. The key operation
of the algorithm is each node’s 1-hop broadcast of its own
estimated trajectory and update of its own trajectory on
receiving the trajectory information from its neighbors. Al-
though there are some methods that utilize the trajectory
information to decrease the error of estimated positions [2,
4], they are designed as centralized algorithms. Unlike these
algorithms, we need to identify the “truly effective informa-
tion” for each mobile node in estimating its position to effi-
ciently use limited bandwidth. Also we have compared our
algorithm with the existing on-line algorithms of estimat-
ing mobile nodes’ positions [6, 14] to show the advantage
of using trajectory information. (2) Regarding the above,
we try to determine how much information about trajecto-
ries should be exchanged among nodes based on the analysis
of algorithm property and performance analysis by simula-
tions. As far as we know, there is no existing work on de-
centralized trajectory estimation. (3) We give two realistic
applications to demonstrate the applicability and effective-
ness of our protocol in the real world.

3. TRADE OVERVIEW

3.1 Environment and Assumption
The TRADE algorithm is executed on each mobile termi-

nal called mobile node (or simply node), which is equipped
with a PAN communication device such as IEEE802.15.4.
We assume another type of nodes called landmarks, which
can know their exact positions anytime. A landmark may
be a mobile node with an accurate GPS receiver or may be
a base station. Each mobile node or landmark is assumed
to have a unique ID that can be generated from its MAC
address or a random value.

Since our method is a range-free localization, each node
does not have to measure the distance between nodes. We
only assume the maximum radio range and the maximum
speed of all the nodes. They are denoted by R and V , re-
spectively.

We let each node have an integer timer that is incremented
for every time interval T . This common time interval T is
used by all the nodes. Hereafter, node u’s k-th time slot is

denoted by φ
[k]
u . We do not assume that these timers are

synchronized (Fig. 1). We let φ
[k]
u − φ

[h]
v denote the number

of time slots by which φ
[k]
u precedes φ

[h]
v . For example, in Fig.

1, φ
[k]
u −φ

[h]
v = 1, φ

[k]
u −φ

[h+1]
v = −1 and φ

[k+1]
u −φ

[k−1]
u = 2.

3.2 Basic Operation



Table 1: Notations.
Symbols Descriptions
T unit of time
V maximum speed of nodes

φ
[k]
u node u’s k-th time slot

p
[k]
u estimated position of node u in φ

[k]
u

P
[k,k′]
u estimated trajectory of node u between φ

[k]
u

and φ
[k′]
u (i.e., p

[k]
u , p

[k+1]
u , . . . , p

[k′]
u )

F (1) 1-hop forwarding interval, i.e., the number
of time slots to send its own trajectory in-
formation as a hello message

F (2) 2-hop forwarding interval, i.e., the number
of time slots to include 1-hop neighbors’ tra-
jectory information into a hello message

W the length of trajectory used to predict the
current position

L the length of trajectory each node updates

Hereafter, p
[k]
u denotes the representative estimated posi-

tion of node u in time slot φ
[k]
u . Also we let P

[k,k′]
u denote

the estimated trajectory of node u between time slots φ
[k]
u

and φ
[k′]
u (k ≤ k′). We represent the trajectory P

[k,k′]
u by

the sequence of the estimated positions, p
[k]
u , p

[k+1]
u , . . . , p

[k′]
u .

The notations are summarized in Table 1.

Message Exchange.
In our proposed TRADE algorithm, each node u peri-

odically broadcasts its own estimated trajectory as a hello
message once every F (1) time slots. F (1) is called 1-hop
forwarding interval that indicates how often each node for-
wards its own estimated trajectory. Furthermore, for every
F (2) time slots, node u may include its 1-hop neighbors’
estimated trajectories received from those neighbors. F (2)

is called 2-hop forwarding interval that indicates how of-
ten each node forwards the estimated trajectories received
through hello messages. F (1) and F (2) are positive integers,
and F (2) is an integer multiple of F (1). To save traffic, a
large value may be set to F (2). Consequently, each node
knows its 1- or 2-hop neighbors’ estimated trajectories.

In more details, a hello message from node u in φ
[k]
u con-

tains node u’s estimated trajectory P
[k′,k]
u (k′ = k − L + 1)

where L is a positive integer called the length of trajectory.
For every F (2)/F (1) hello messages, node u may also in-

clude node v’s estimated trajectory P
[h′,h]
v (φ

[k′]
u −φ

[h′]
v ≤ 1,

φ
[k′′]
u − φ

[h]
v ≤ 1 and k′ ≤ k′′ < k) where φ

[k′′]
u is the latest

time slot when v is the 1-hop neighbor of node u. If node

u receives a hello message from node v in time slot φ
[k]
u , it

knows the estimated trajectory P
[h′,h]
v (h′ = h − L + 1) of

1-hop neighbor v and the estimated trajectory P
[l′,l]
w of each

2-hop neighbor w (if any). We note that each landmark
includes its accurate position information into its hello mes-
sages.

Position Estimation.
We denote the current time slot of node u by φ

[κ]
u . In every

time slot, node u predicts current position p
[κ]
u from its last

W estimated positions P
[κ−W,κ−1]
u where W is a positive

integer. The estimation of p
[κ]
u is done by taking the average

sum of vectors in trajectory P
[κ−W,κ−1]
u per a time slot for

the last W time slots. That is,

p[κ]
u = p[κ−1]

u +
1

W

WX
k=1

“
p[κ−k]

u − p[κ−(k+1)]
u

”
(1)

Trajectory Update.
After the prediction of the current position, node u up-

dates its own last L estimated positions P
[κ−(L−1),κ]
u where

L is a constant using (i) the estimated trajectories of 1-hop
(and 2-hop) neighbors and (ii) the history of neighbors that
indicates the 1-hop or 2-hop neighbors in each past time slot.

To update the last L estimated positions, we consider the
following three types of relationship between the two nodes’
positions at the same time or between the two positions of
a single node at previous and next time slots. They are
called (i) positive radio-range constraint, (ii) negative radio-
range constraint and (iii) movable-range constraint, and are
defined as follows.

1. For any time slot φ
[k]
u and any node v, if node v was

a 1-hop neighbor of node u in time slot φ
[k]
u and if the

distance between p
[k]
u and p

[h]
v , where φ

[k]
u −φ

[h]
v = 1, is

larger than R, node u should update p
[k]
u such that the

distance is shorter than R. This is a positive radio-
range constraint.

2. For any time slot φ
[k]
u and any node v, if node v was

NOT a 1-hop neighbor of node u in time slot φ
[k]
u and if

the distance between p
[k]
u and p

[h]
v , where φ

[k]
u −φ

[h]
v = 1,

is shorter than R, node u updates p
[k]
u such that the

distance is larger than R. This is a negative radio-
range constraint.

3. For any time slot φ
[k]
u , if the distance between p

[k]
u and

p
[k−1]
u is larger than V ·T , node u updates p

[k]
u such that

the distance is shorter than V · T . This is a movable-
range constraint.

Because the positions of nodes may relate to each other
temporally and spatially, update of one position may violate
the constraints on the other positions in different time slots

at the same node. Here, suppose that position p
[k]
u , which

satisfies a movable-range constraint, is updated by a positive
radio-range constraint. This may violate the constraints on

positions p
[k−1]
u and p

[k+1]
u . Therefore, we apply the update

of trajectory P
[κ−(L−1),κ]
u that is started from the earliest

position p
[κ−(L−1)]
u to the latest one p

[κ]
u several times so

that we can satisfy as many constraints as possible.
We exemplify this procedure in Fig. 2. For example, we

suppose that nodes u and v met as shown in Fig. 2(a). Also,
we show the estimation process of node u and v in Fig. 2(b).

At first, node u predicts the current position p
[k]
u . In time

slot φ
[k+1]
u , node u modified p

[k]
u to satisfy the positive radio-

range constraint with p
[k]
v based on the hello message sent

from node v in time slot φ
[k]
u . Since this modification violates

some movable-range constraints, P
[k−2,k]
u is modified to sat-

isfy the movable-range constraints again. Moreover, p
[k−1]
u is

modified to satisfy the negative radio-range constraint with

p
[k−1]
v in time slot φ

[k+2]
u based on the hello message sent

from node v in time slot φ
[k+1]
u .
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Figure 2: Snapshot from algorithm.

In this way, the updated trajectory of node u may affect
trajectories of neighbors by positive or negative radio-range
constraints. Continuing the update of trajectory at local
nodes and exchange of the updated trajectories, the trajec-
tories of all the nodes are refined asymptotically.

The detail description of the algorithm is given in Ap-
pendix.

4. VALIDATION OF PROTOCOL DESIGN

4.1 Accuracy Improvement by Constraints
In this section, we explain how each constraint helps us

to improve the accuracy of estimated trajectory through a
typical example to validate our protocol design.

Assume that nodes a, b, c and d move as shown in Fig.

3(a). Here, the accurate position of node u in time slot φ
[t]
u

is denoted as q
[t]
u . At time slot φ

[3]
a , node b sends a hello

message to a, node d sends a hello message to c, and node c
sends a hello message to a. Hereafter, we explain how node a
updates its current position and trajectory. For simplicity of
discussion, we assume that neighbor nodes b, c and d have
already estimated their trajectories with enough accuracy

(u ∈ {b, c, d} : p
[t]
u � q

[t]
u ) and the almost accurate positions

are recorded in the hello messages.
First, we explain that it helps us for accurate estimation

to re-compute the trajectory using the positive radio-range
constraints and movable-range constraints. In Fig. 3(b),
we show the estimation result in the simplest way that esti-
mates only the current position using the current positions
of neighbor nodes (without trajectory information). In this

case, node a receives the node b’s hello message at φ
[3]
a , but

the estimated a’s position p
[3]
a is too far from the received

b’s position p
[3]
b . This means that position p

[3]
a violates the

positive radio-range constraint, and an error collection vec-

tor (see Appendix for definition) towards p
[3]
b , which is used

to correct the position to satisfy the violated constraints, is

applied to p
[3]
a . Repeating such position re-calculation, p

[3]
a

will be moved to an appropriate position.
On the other hand, Fig. 3(c) shows the estimation re-

sult when each node not only estimates the current position
but also modifies the trajectory using trajectories of 1-hop
neighbors. In this case, an error collection vector towards

p
[3]
b is also applied to p

[3]
a . Additionally, appropriateness of

a’s trajectory is considered. The movable-range constraints,

which restrict the distances between p
[1]
a and p

[2]
a and be-

tween p
[2]
a and p

[3]
a , are applied, and the positions p

[1]
a and

p
[2]
a are also updated.
Next, we explain the effect of negative radio-range con-

straints on estimation of the trajectories. We consider that

node a can receive d’s position p
[3]
d forwarded by c. The esti-

mation result by using the negative radio-range constraints
from 1-hop and 2-hop neighbors is shown in Fig. 3(d). In
this case, since a did not receive any message from b around

φ
[2]
a , they are considered as having been apart from each

other. So an error collection vector to the opposite direc-

tion from p
[2]
b is applied to p

[2]
a . Similarly, a did not receive

any message from d around φ
[3]
a , a’s position p

[3]
a will be

excluded from the radio-range of d. As the result, more ac-
curate trajectory can be estimated than in the case of Fig.

3(c). Since the estimated a’s current position p
[3]
a still in-

cludes relatively larger error, p
[3]
a will be updated after φ

[4]
a

repeatedly whenever a receives a hello message. This will
make the estimation more accurate.

However, we note that because a negative radio-range con-
straint makes positions of nodes pushed away from a circle,
it may obstruct desirable update if the initial estimation is
too far from the accurate one. For example, in the situa-
tion shown in Fig. 3(e), a negative radio-range constraint
disturbs convergence of the solution. Here, node a had gone

straight and turned at φ
[1]
a . Then a encounters with b at

φ
[3]
a , and receives a hello message. Node a estimates p

[2]
a

and p
[3]
a by linear interpolation. After receiving a hello mes-

sage, p
[3]
a is moved toward p

[3]
b by a positive radio-range con-

straint. However, around φ
[2]
a , a did not receive any hello

message, since a was not in the radio-range of b. So a nega-

tive radio-range constraint is applied to the pair of p
[2]
a and

p
[2]
b . As shown in the figure, the constraint prohibits p

[2]
a

from moving to p
[2]
b , and p

[2]
a may not be converged to an

accurate position. Such a problem occurs only if forbid-
den areas made by negative radio-range constraints lie in
the area between the initial positions and the accurate po-
sitions. Hence, this problem can be avoided by applying
negative radio-range constraints only for the positions that
are relatively near from the accurate ones. We thought we
could avoid this problem by skipping application of negative
radio-range constraints to the recent positions, which may
include large error. This is proved by simulations in Sec.
5.1.

4.2 Demonstration of TRADE by Simulations



(a) Real movement and
message exchange

(b) Estimation without tra-
jectory information

(c) Estimation without
negative radio-range con-
straints

(d) Estimation with nega-
tive radio-range constraints

(e) Bad influence of negative radio-range constraints
on trajectory update

Figure 3: Overview of estimation process.

To prove the property analysis in Sec. 4.1, we have con-
ducted simulations of TRADE.

We assume the Random WayPoint (RWP) mobility model
in a 100m × 100m area with 9 landmarks (denoted by black
stars in Fig.4). The simulation time S was set to 300 sec.
The speeds of nodes were set to follow the uniform distribu-
tion in the interval [1.0, 2.0] m/s. The pause time of RWP
was set to zero. In order to see the nature of the algorithm,
we would like to exclude the effect of wireless communica-
tion instability. Therefore, in this experiment, we have used
the ideal communication model where two nodes can com-
municate with each other without loss of data if the distance

100m

100m

Figure 4: Landmark deployment patterns.

between them is not greater than R. The default values of
the other parameters are as follows. The interval T of time
slot was 1.0 sec., the length L of a trajectory modified in
each update was 10, the length W of a trajectory used to

predict the current position p
[κ]
u was 10, radio range R was

10 m, the number n of nodes was 200, the 1-hop forwarding
interval F (1) was 1 sec., and the 2-hop forwarding interval
F (2) was ∞. We note that F (2) = ∞ means that nodes
never sent the trajectories of their 1-hop neighbors.

We have measured the position errors defined by formulas

(2) and (3), where p
[k][k′]
u is the value of p

[k]
u as of time slot

φ
[k′]
u (k ≤ k′), and q

[k]
u is the accurate position of node u in

time slot φ
[k]
u . Also, l is called elapsed time from k.

Error(k, l) =
1

n

nX
u=1

||q[k]
u − p[k][k+l]

u || (2)

Error(l) =
1

S/T

S/TX
k=1

Error(k, l) (3)

Intuitively, Error(k, l) represents the average error of all
the nodes’ estimated positions of k-th time slot which are
referred in (k + l)-th time slot. Error(l) is the average of
Error(k, l) throughout the simulation. Hereafter, Error(0)
is called realtime error and Error(L−1) is called final error

since no position update is applied to p
[k]
u if L ≤ l.

First, we show that the exchange of trajectory information
is effective to improve position accuracy since it provides
negative radio-range constraints. According to the TRADE

algorithm, node u predicts the current position p
[k]
u in k-th

time slot φ
[k]
u and updates it in the following L−1 time slots

(i.e., φ
[k+1]
u , φ

[k+2]
u , . . . , φ

[k+L−1]
u ). Fig. 5 shows Error(l)

(0 ≤ l < L and L = 10) and the number of positive or
negative radio-range constraints used for position updates

in time slots φ
[k+1]
u , φ

[k+2]
u , . . . , φ

[k+L−1]
u (0 ≤ k ≤ S/T −L).

We can observe that the position error is decreasing as time
elapses because node u may obtain new negative radio-range
constraints whenever it receives a hello message.

Secondly, we show that the 1-hop neighbors’ trajectory
information gradually increases negative radio-range con-
straints. We also show that it provides almost the same
number of constraints as the 2-hop neighbors’ position in-
formation but improves estimation accuracy. We conducted
experiments with different settings of length L and 2-hop
forwarding interval F (2), in order to see how and when neg-
ative radio-range constraints are delivered to each node. For

estimation of p
[k]
u in the case of L = 2 and F (2) = 1, the

number of positive radio-range constraints of φ
[k]
u was 8.55,

and that of negative radio-range constraints was 9.16. We

had almost the same number of constraints as of φ
[k+L−1]
u
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Figure 5: Number of positive / nega-
tive constraints and position error (vs.

elapsed time slots l). L = 10, F (1) = 1

and F (2) = ∞.

Figure 6: Number of negative
constraints and final error (vs.

trajectory length L). F (1) = 1

and F (2) = ∞.

Figure 7: Number of positive /
negative constraints and final er-
ror (vs. 1-hop forwarding inter-

val F (1)). L = 10 and F (2) = ∞.

in the case of L = 10 and F (2) = ∞. This indicates that
if each hello message does not contain any 1-hop neighbor’s
trajectory, a similar number of constraints can be obtained
through nodes’ own trajectory information with some delay.
Although they had almost the same number of constraints,
the resulting final errors were different. In the case of L = 2
and F (2) = 1, Error(L − 1) = 0.81R while in the case of

L = 10 and F (2) = ∞, Error(L−1) = 0.50R. The difference
between the two cases is the timing to obtain the negative
radio-range constraints; in the former case they are delivered
almost in real-time and in the latter case they are delivered
with delays. This fact proves occurrence of the case of Fig.
3(e) in Sec. 4.1 and indicates that application of negative
radio-range constraints should be delayed. In TRADE, the
positive radio-range constraints can be delivered in real-time
and the negative radio-range constraints are gradually de-
rived in the subsequent time slots by exchange of nodes’
trajectory information.

5. PERFORMANCE ANALYSIS
In this section, we discuss several factors that affect the

accuracy based on simulation results. We also analyze the
traffic amount of TRADE to see its appropriateness. We as-
sume the same simulation settings as in the previous section,
and use the default parameters if not otherwise specified.

5.1 Estimation Accuracy
Trajectory Length: We observe the effect of L on the final

errors. Fig. 6 shows the final errors and the number of neg-

ative radio-range constraints used in time slot φ
[k+L−1]
u . To

exclude the effect of the number of neighboring nodes on the
analysis, we conducted simulations with different settings of
the number n of nodes, n =100, 200 and 400. From the
graph, we can say that larger L makes better accuracy in the
final errors, because longer trajectories bring more negative
radio-range constraints as proved in the previous section. It
is worth noting that the average numbers of positive radio-
range constraints were 4.27, 8.55 and 16.99 in the cases of
n = 100, 200 and 400, respectively. We may choose L = 10
to obtain the similar number of negative constraints with
that of positive ones, which may result in better accuracy.

1-hop Forwarding Interval: Fig. 7 shows the final errors
for the different values of 1-hop forwarding interval, F (1).
From the result, larger 1-hop forwarding interval makes larger
error because the number of positive radio-range constraints
decreases. On the contrary, the numbers of negative radio-
range constraints is maximum with F (1) = 2 and F (1) = 4.
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Figure 8: Number of negative constraints and po-
sition error (vs. 2-hop forwarding interval F (2)).

L = 10 and F (1) = 1.
.
The reason is as follows. With F (1) = 6 or more, each
node may miss to receive hello messages from its neighboring
nodes considering the sojourn time in the radio circle, and
the number of both positive and negative radio-range con-
straints may decrease. With F (1) = 2 or 4, each node may
not miss hello messages. But the number of positive radio-
range constraints is less than F (1) = 1. Instead, the number
of negative radio-range constraints increases because of the
decrease of positive radio-range constraints.

2-hop Forwarding Interval: In the TRADE algorithm,
each node u sends 1-hop neighbors’ estimated trajectories
for every F (2) time slots. We show Error(l) (0 ≤ l < L) in

Fig. 8(a) under various values of F (2). Also, the number of
negative radio-range constraints used for estimation is shown
in Fig. 8(b). The number of positive radio-range constraints

is 8.55. From the result, smaller F (2) makes larger final error
even with more negative radio-range constraints. Due to the
nature of the algorithm that iteratively corrects positions, it
may not be possible to satisfy all the constraints in early
time slots if we have too many ones. By this feature, errors
in the early slots may be propagated to the initial positions
in the next time slot. In order to prove this feature, we show
in Fig. 9 the position errors of TRADE which does not use
negative radio-range constraints in a certain time slots from
realtime. From the result, we can see that the realtime and
final errors are improved if we do not use negative radio-
range constraints in the early slots, especially between 0 and
2 time slots. However, we do not use the negative radio-
range constraints for more than two time slots, the final
errors get worse because of insufficiency of constraints. From
the result, in the following simulations, we evaluate TRADE
which ignores negative radio-range constraints in the first
two slots.

Node Density and Radio Range: We have evaluated the
impact of the node density with different values of the num-
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ber n of nodes and radio range R. We let dn denote the node
density, i.e., the average number of neighboring nodes. At
first, Fig.10 shows the final errors for various values of radio
range R and node density dn. From the result, higher node
density achieves more accurate estimation. Especially, the
final errors are less than 0.2R where dn is more than 20 for
all the cases of n. Also, smaller number of nodes n makes
better accuracy in the same node density. This is because we
adjusted the radio ranges to realize the same node density
with smaller number of nodes, and it causes many chances
to communicate with landmarks. Secondly, Fig. 11 shows
the final errors for various values of n. From the result,
when the radio range is less than about 15m, larger radio
ranges decrease errors because it also provides more chances
to communicate with landmarks. However, when the radio
range is more than 20m, it often makes errors larger since
radio-range constraints are relaxed.

5.2 Communication Traffic
We analyze the amount of communication traffic of TRA-

DE. We can represent a piece of position information by 8
bytes (= 4 bytes ×2). So the message size is 8L bytes where
L is the trajectory length to be transmitted, and the size of
a message with 1-hop neighbors’ trajectory information sent
for every F (2)/F (1) hello message is about 8L+8Ldn, where
dn denotes the node density. So, the average message size
is 8L + (8LdnF (1)/F (2)). In the case of n = 200, L = 10,

F (1) = 1, F (2) = 4 and R = 10, where dn is about 8.54,
the average message size is 250 bytes. In this situation, the
consumed bandwidth by each node is about 2 kbps. This is
small enough considering the recent PAN technologies like
IEEE802.15.4, and even we may control it by adjusting the
length L and interval F (2).

6. PERFORMANCE EVALUATION
In this section, we have conducted four types of simula-

tions to evaluate the performance of TRADE. In the first
simulation, we have evaluated the impact of the factors that

0

2

4

6

8

10

12

0 2 4 6 8 10
Variance of radio range, 2

Po
si

tio
n 

er
ro

r (
m

)

realtime error
final error

Figure 12: Position error (vs. variance of radio
range).

seem to affect TRADE in real environments. In the previ-
ous section, we analyze the estimation accuracy of TRADE
in ideal environments. In real environments, however, sev-
eral factors such as packet loss and irregularity of radio
range affect the estimation accuracy. In the second simula-
tion, we have compared TRADE with the existing real-time
localization methods. In this environment, we show that
TRADE can achieve more accurate estimation than the ex-
isting methods by exchange of trajectories. In the third
simulation, we consider the issues on service deployment of
TRADE such as deployment of landmarks and member dy-
namics. In the fourth experiments, we demonstrate the per-
formance of TRADE with two application scenarios. We
assume the same simulation settings as in the previous sec-
tion except in the fourth simulation. Also, we use the default
values except F (2) (F (2) = 4) if not otherwise specified.

6.1 Applicability to Real Environments
Irregularity of Radio Range: In real environment, the

radio range may become irregular because of interference,
reflections and other reasons. To evaluate the impact of ir-
regular radio range, we assume that the radio range follows
the normal distribution denoted by R = N(10, σ2)m. Now,
Fig. 12 shows the realtime errors and final errors with vari-
ous values of variance σ2 of the radio range. From the result,
larger variance of the radio range makes larger errors because
the radio-range constraints become more inaccurate.

Packet Loss: In the previous simulations, we did not con-
sider message loss. As previously discussed, we show that
higher node density makes better estimation, but hello mes-
sages of large sizes may be lost because of their contention
on the same wireless channel. In order to see the effect by
message contention, we used the following contention model
P = (1 − p)dn where P is the probability that a node suc-
ceeds to receive a packet from its neighbors, dn is node den-
sity, and p is the occupancy ratio of the channel, i.e., the
average sending data size/channel capacity. We think that
the channel capacity is 250kbps assuming PAN bandwidth
like IEEE802.15.4. Table 2 shows the final errors under this
model. From the result, although larger number of nodes
makes packet loss rates worse, it has less impact on the fi-
nal errors. We can say that considering the wireless channel
capacity limitation, TRADE can achieve reasonable estima-
tion accuracy.

Evaluation with Real Environment Communication Log:
In order to examine the performance in a real environment,
we have used communication log among MICAz Motes ter-
minals collected in the experiments of our previous work[4].
In the experiment, we prepared an area of 18m × 18m con-
sisted of 9m × 9m cells, and let 10 students having Motes



Table 2: Position error (with channel contention
model).

n 100 200 300

Packet loss rate 0.01 0.05 0.17
Final error with con-
tention model

0.62m 0.46m 0.37m

Final error without con-
tention model

0.60m 0.46m 0.38m

Table 3: Results of real environment experiments.
Realtime error Final error

Real environment 3.46m 3.14m
Simulation (R =3.0 m) 4.10m 4.02m
Simulation (R =3.8 m) 2.90m 2.19m

walk on the edges of the cells choosing their directions at
each crossing point. We put 4 Motes as landmarks at the
corners of the area. The radio transmission power of Mote
was set to −15dBm, and radio transmission range R was
about 3.0m. The experimental result in comparison with
simulation is shown in Table 3. We can see that the esti-
mation error in the simulation with R = 3.0 is larger than
that in the real environment. This is because in the real
environment, actual transmission ranges were longer than
expected ones due to irregularity of radio ranges. Actu-
ally, with R = 3.8 where the average number of neighboring
nodes is the same as that of the real connectivity informa-
tion, the difference between the results of the real and simu-
lation environments becomes smaller. We could confirm the
similarity between the experiments by simulation and in the
real environment, and the good aspect of TRADE proved
by simulation can be retained in the real environment.

6.2 Comparison with Other Algorithms
We have compared the performance of TRADE with that

of Amorphous[11] and UPL[14]. We regard not final errors
but realtime errors as the estimation errors in TRADE for
fair comparison. The result is shown in Fig. 13. Especially
in the case of a small number of nodes, the accuracy of
TRADE is better than the others because of exchange of
trajectory.

6.3 Other Issues in Real Environment
In real environments, nodes may join the TRADE protocol

in different timings. When a node starts the algorithm, it
has no information about its position and needs a certain
time to estimate positions with reasonable errors. We call
this time unstable time. In order to evaluate unstable time,
we let 100 new nodes start the algorithm at the half time of
the simulation when 200 existing nodes had already started
the algorithm. The initial deployment of new nodes was
uniform distribution. Fig.14 shows the position errors of
the existing nodes and new nodes over time where at time
0 new nodes started the algorithm. From the result, the
errors of new nodes were almost the same as those of the
existing ones after 15 seconds. Also, the position errors of
the existing nodes got worse when new nodes joined, but
they were decreasing rapidly.

Furthermore, in order to see the behavior of the protocol
in different environments, we have evaluated the impact of
landmark density in the following cases: (1) 9 landmarks are
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deployed at black stars in Fig.4 (default), (2) 13 landmarks
are deployed at black and gray stars in Fig.4, (3) landmarks
are deployed at black and white stars in Fig.4 and (4) land-
marks are deployed at all the stars in Fig.4. Fig.15 shows
the realtime and final errors in all the cases. From the re-
sult, more landmarks can achieve smaller realtime and final
errors.

6.4 Application Examples
We show two application scenarios, and demonstrate that

our TRADE works fine by simulation experiments.

Customer Tracking and Location-aware Shopping Sup-
port.

In huge stores and shopping malls, by attaching small sen-
sor nodes to shopping carts, we can track the behavior of
customers by collecting their trajectories. Such information
can be used to provide highly-personalized location-aware
service and advertisement by predicting their behavior, ob-
jective and interest in stores. Also, customers can make
use of their trajectory information to understand the visited
and current locations and to determine shopping plans for
the remaining time. To evaluate the performance of TRADE
in this environment, we have conducted simulations using a
store map shown in Fig. 16, and have estimated the trajec-
tory of a customer from the entrance to the exit. We put
other 40 nodes moving in the store randomly along the path-
ways. We have prepared three different patterns of landmark
placements; (a) the dense placement in which 53 landmarks
are placed at all the corners, (b) the medium placement in
which 35 landmarks are placed at major corners, and (c)
the least placement in which only 16 landmarks are placed
on the walls. We have used a radio model where the radio
range follows a normal distribution N(5.0, 0.5)m.

In Fig. 16, we show the estimated trajectories (lines with
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Figure 16: Estimated and real trajectories in store with different placement of landmarks.

Table 4: Final errors in the store example.
Number of landmarks Average (m) Worst (m)

53 0.78 2.43
35 0.86 2.81
16 0.94 3.40

white circles) and the real trajectories (lines with black cir-
cles) with landmarks (stars). We also show the estimation
errors in Table 4. From these results, even with the least
placement of landmarks, the trajectory could be estimated
clearly and accurately with less than 1m error in average,
and its shape is very close to the real trajectory. In partic-
ular, even though the real trajectory goes into the pathway
between shelves and goes back and around the place where
there is no landmark, TRADE could estimate such complex
behavior. This shows that TRADE can be applied to such
an application that needs to identify the location of indoor
nodes precisely with a reasonable number of landmarks.

Group Navigation in Amusement Park.
As the second example, we consider crowded outdoor en-

vironment where many people walk around a place like an
amusement park. Since TRADE allows nodes to obtain
neighbors’ trajectories, we may provide such a service which
warns parents that their children are getting separated from
them. We use a map shown in Fig. 17 constructed by re-
ferring to a Google satellite picture. We assume that mo-
bile nodes may appear and disappear at specific points such
as entrance, shops and attractions. The average number
of nodes at each moment was 606. We also put two spe-
cial nodes as a pair of guests playing together. They move
around the park getting closer and further. From Fig. 18,
even though certain difference from the real distance is ob-
served around 200 seconds, we can say that the estimation
could reproduce the variation of the distance between the
two nodes. This shows that TRADE can estimate the rela-
tive positions accurately.

7. CONCLUSION
In this paper, we have proposed a novel trajectory esti-

mation method called TRADE in fully decentralized mobile
ad hoc networks. In TRADE, each mobile node periodically
transmits messages containing its estimated trajectory in-
formation, and re-computes its own trajectory using those
from its neighbors. Our protocol design has been validated
by property analysis and a number of simulation results.
Furthermore, we have shown the effectiveness of the proto-
col in the real world using two realistic application examples.

Our future work is to evaluate the usefulness of TRADE

Entrance

Souvenir
Shop

Atraction

Atraction

Atraction

AtractionAtraction

Atraction
Food Shop

Atraction
Atraction

Atraction

50m

Figure 17: Amusement park map.
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under more scalable and practical applications.
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APPENDIX

A. DETAILS OF TRAJECTORY UPDATE
Node u applies the following algorithm to update the tra-

jectory P
[κ−(L−1),κ]
u . To update the trajectory, for each of

the three constraints (positive radio-range, negative radio-
range and movable-range constrains), we provide the cor-
responding error correction (EC) vector and an error cor-
rection (EC) coefficient. The EC vector moves the current
estimation to the direction so that the corresponding con-
straints can be satisfied, and the associated EC coefficient is
used to balance the different EC vectors that are applied at a

time. Then for each estimated position p
[k]
u in P

[κ−(L−1),κ]
u ,

we check if it satisfies these constraints or not. If the current
estimation p

[k]
u violates some of the constraints, we obtain

the average sum of the corresponding EC vectors weighted
by EC coefficients for the new estimation.

Here, we formally describe the constraints that are applied

to each estimated position p
[k]
u . (1) For each node v that was

a neighbor of node u in time slot φ
[k]
u , ‖p[k]

u −p
[h]
v ‖ ≤ R, where

φ
[k]
u − φ

[h]
v ≤ 1, must hold based on the positive radio-range

constraint. This constraint is referred to as Cpos
u,[k],v. (2) For

each node v that was NOT a neighbor of node u in time slot

φ
[k]
u , ‖p[k]

u −p
[h]
v ‖ > R, where φ

[k]
u −φ

[h]
v ≤ 1, must hold based

on the negative radio-range constraint. This constraint is
referred to as Cneg

u,[k],v. (3) For the estimated position of

node u in time slot φ
[k−1]
u , ‖p[k]

u − p
[k−1]
u ‖ ≤ V · T must hold

based on the movable-range constraint. This constraint is
referred to as Cprev

u,[k] . Similarly, Cnext
u,[k] should also be satisfied

for the estimated position p
[k+1]
u .

The EC vectors and EC coefficients are designed below.
Hereafter, we let Δp(C) and w(C) denote the EC vector and
the EC coefficient of constraint C.

For the positive radio-range constraint Cpos
u,[k],v, we give

the following EC vector and EC coefficient. The EC vector
is the vector between the two points. Therefore, as larger
than R the distance is, the norm of the EC vector is larger.

Δp(Cpos
u,[k],v) = p[k]

u − p[h]
v

w(Cpos
u,[k],v) =

j
1 if Cpos

u,[k],v is violated

0 otherwise
(4)

Similarly, for the negative radio-range constraint Cneg
u,[k],v,

Δp(Cneg
u,[k],v) = −(R − ‖p[k]

u − p[h]
v ‖) · ( ̂

p
[k]
u − p

[h]
v )

w(Cneg
u,[k],v) =

j
1 if Cneg

u,[k],v is violated

0 otherwise
(5)

where ba is a unit vector of a.
For the movable-range constraint Cprev

u,[k] ,

Δp(Cprev
u,[k] ) = p[k]

u − p[k−1]
u

w(Cprev
u,[k] ) =

8>><
>>:

1 +
P

v{w(Cpos
u,[h],v) +w(Cneg

u,[h],v)}
if Cprev

u,[k] is violated

0
otherwise

(6)

The same EC vector and the EC coefficient are applied to
the movable-range constraint Cnext

u,[k] ;

Δp(Cnext
u,[k] ) = p[k]

u − p[k+1]
u

w(Cnext
u,[k] ) =

j
w(Cprev

u,[k] ) if Cnext
u,[k] is violated

0 otherwise
(7)

For each violated constraint, we add the corresponding
EC vector weighted by its EC coefficient;

Δp[k]
u =

X
v

w(Cpos
u,[h],v)Δp(Cpos

u,[k],v)

+
X

v

w(Cneg
u,[h],v)Δp(Cneg

u,[k],v)

+ w(Cprev
u,[k] )Δp(Cprev

u,[k] ) + w(Cnext
u,[k] )Δp(Cnext

u,[k] )(8)

We also add the EC coefficients.

Δw[k]
u =

X
v

w(Cpos
u,[h],v) +

X
v

w(Cneg
u,[h],v)

+ w(Cprev
u,[k] ) + w(Cnext

u,[k] ) (9)

Finally, we update the estimated position p
[k]
u as follows;

p[k]
u ← p[k]

u + α · Δp
[k]
u

Δw
[k]
u

(10)

where α is a constant to represent the degree of the effect of
modifications. From several experiments, we have learned
α = 0.3 is almost the best value.

We continue to update each p
[k]
u of trajectory P

[κ−(L−1),κ]
u

beginning with the oldest positions for Γ times. We may
empirically choose Γ = 10.


