
D-sense: An Integrated Environment for

Algorithm Design and Protocol Implementation
in Wireless Sensor Networks

Kazushi Ikeda1, Shunsuke Mori1, Yuya Ota1†, Takaaki Umedu12,
Akihito Hiromori12, Hirozumi Yamaguchi12, and Teruo Higashino12

1 Graduate School of Information Science and Technology, Osaka University
2 Japan Science Technology and Agency, CREST

(k-ikeda,s-mori,umedu,hiromori,h-yamagu,higashino)@ist.osaka-u.ac.jp

ohta@am.sanken.osaka-u.ac.jp†

Abstract. Since Wireless Sensor Networks (WSNs) are regarded as
large-scale distributed systems in nature, it is (i) difficult to implement
their distributed low-level codes, (ii) hard to analyze their performance
and (iii) almost impossible to operate a number of nodes manually. In
this paper, we propose an integrated environment called D-sense to solve
these problems in WSN development. By providing algorithm-level APIs,
D-sense tries to hide distributed, low-level operations in the NesC pro-
gramming language. The algorithm-level APIs and other NesC codes can
automatically be converted into simulator codes to avoid code-writing for
simulation purpose. In addition, D-sense provides useful functions like
monitoring, logging and debugging of distributed programs. We have
implemented several known protocols and evaluated the performance by
simulation and real environmental experiments to demonstrate the func-
tions of D-sense.

1 Introduction

In Wireless Sensor Networks (WSNs), due to heterogeneity of architecture, net-
work scale and applications, new protocols are often developed or existing pro-
tocols are tuned accordingly. Thus many protocols have been designed with dif-
ferent design goals [1–8]. However, protocol designers and developers face with
typical problems which have been experienced in designing distributed systems.
Even though the developers wish to concentrate on abstract behavior of pro-
tocols, they at last need to write target-dependent low-level codes. Then they
carry out performance analysis and validation in simulated networks or real
environment. However, additional effort may be required to prepare another im-
plementation of the protocol for network simulators, since in most cases it is
not compatible with real codes. Also experiments in real environment require
to set up many sensor nodes, to log their behavior, and to manipulate them to
validate (debug) the implementation. Obviously all of these tasks are really hard
and complex.



In this paper, we design and develop D-sense, an integrated development en-
vironment to support protocol development in WSNs efficiently. D-sense mainly
assumes NesC on TinyOS as the target language and architecture, and exper-
iments have been carried out on Mica Motes accordingly. However, for other
languages such as C or Java, D-sense’s design concept can also be applied. The
advantages of D-sense are three-fold. First, D-sense offers algorithm-level APIs
which are derived by classifying and studying existing protocols. Thus develop-
ers can design distributed algorithms in NesC language directly with these APIs.
Secondly, it enables seamless integration of simulated and real sensor networks.
To accomplish this, we provide a translator from NesC codes into QualNet simu-
lator application codes. Also the physically sensed events and sensor node status
observed in real environment are made available in the simulator. These capabil-
ities increase repeatability and fidelity of experiments. Thirdly, monitoring and
run-time manipulation of sensor node behavior is possible. We will later show
how this functionality can powerfully support developers in test and maintenance
of WSN protocols.

Using the D-sense APIs, we have implemented GPSR [1], SPEED [2], BIP
[3] and Rumor Routing [4]. In particular, we have evaluated the performance
of SPEED in both real and simulated networks and compared the results with
[2] to validate the D-sense implementation. It was also confirmed how D-sense
contributed to alleviate the development cost.

This paper is organized as follows. In Section 2, we address the related work
and show the features of D-sense. In Section 3, we describe the functions of
D-sense that support design, experiments and protocol debugging of WSN. In
Section 4, we show example implementation of the existing WSN protocols by
using the D-sense design APIs, and Section 5 shows the experimental results.
Section 6 concludes the paper.

2 Related Work

Large-scale testbeds such as MoteLab [9] and CitySense [10] usually provide
management functions like online distribution of execution codes to mitigate
maintenance costs. D-sense differs from them since it is aimed at comprehensive
support of design, development and performance analysis.

TinyDB [11] and COUGAR [12] support designing query processing in sen-
sor networks. They provide SQL-like APIs to implement event acquisition and
search processes. MATE [13] also provides APIs for more generic purposes, but
only low-level APIs like sensing events, pushing data to stack or sending data
are designed. EnviroSuite [14] is an object-based programming model frame-
work for tracking and environmental monitoring. Meanwhile, we attempt to help
high-level design of more generic protocols including geographic/random-based
routing and data fusion/diffusion by extracting their typical behavior. This ap-
propriately hides both distributed and low-level behavior so that developers con-
centrate on algorithm description. For example, geographic routing protocols like
GPSR which employ greedy forwarding strategy need a series of the following



WSN Protocols
a Rumor Routing [4]
b AODV [5]
c BIP [3]
d MDTMR/MNTMR [6]
e LEACH [7]
f GROUP [8]
g GPSR [1]
h SPEED [2]

a,b

Store and Search

WSN Routing
Protocols

Routing schemes

Intended application

Constraints

Topology Control

Mesh

Tree

Hierarchical

Position-base

Collect to BS

Centralized

Distributed

Energy

QoS
(delay,bandwidth)

c,d

e,f

g,h

d,f,h

a,c,e,f

c

a,b,d,h

Multicast a,c,d

b,f,g

e,h

Fig. 1. Criteria in Classification of WSN Protocols

atomic actions at each node; (i) obtaining positions of neighbors, (ii) computing
distances between the node and the neighbors and between the neighbors and
the destination, (iii) finding the neighbor which is closer to the destination than
the node and is the closest to the destination among the other neighbors, and
(iv) sending a packet. D-sense defines an API for each atomic action, and also
provides a single API for a series of these actions by using those atomic APIs.

In summary, as far as we know, no environment has been provided that
comprehensively supports algorithm design, low-level implementation, seamless
use of simulator and real terminals, and online debugging/monitoring in real
environment.

3 Functions of D-sense

3.1 High-level Design Support

One of the most important features of D-sense is high-level design support. Using
the D-sense design APIs, developers can give algorithm-level NesC descriptions.
Then the D-sense design API translator takes them as inputs, and expands the
embedded APIs that are implemented as macros into pure NesC implementation
automatically. In order to support as many types of protocols as possible, the
D-sense design APIs are developed based on property analysis of existing typical
protocols. These protocols are classified by the criteria which are inspired from
[15]. A classification example by these criteria is given in Figure 1. For example,
GPSR (“g” in Figure 1) is a position-based routing method and is used in GHT
[16] or some other methods that employ position-based event accumulation and
search mechanisms. In implementing this protocol, we may use the APIs for



Table 1. Part of D-sense Design API

Generic APIs
Get the IDs of the one hop neighbor nodes

-> get neighbors(IDs[],len IDs)
Send a packet to the designated node

-> send unicast packet(ID,pkt)
Position base protocol APIs
Get the position of the designated node

-> get position(ID)
Compute the distance between the designated
two nodes

-> get distance(ID,ID)
Hierarchical protocol APIs
Get the IDs of the cluster members

-> get cluster nodes(IDs[],len IDs)
Get the cluster head of the neighbor cluster

-> get neighbor clusterhead()

Energy Constraint Protocol APIs
Get the residual battery of the designated node

-> get residual energy(ID)
Get the energy consumption to send a packet

-> get transmission energy()
QoS Constraint Protocol APIs
Get the delay between the designated two nodes

-> get delay(ID,ID)
Get the packet loss ratio at the designated node

-> get packet loss rate(ID)
Functional (Combined) API
Get the ID of the maximum residual battery node
in a cluster
Get the minimum delay node which has the spe-
cific data
Get the packet loss ratio in the tree

Fig. 2. A Snapshot from QualNet Simulator (Sensor Node Status is Visualized)

“position-based routing” and “store and search application”. Similarly, some
other known protocols are classified in the figure.

For each type in the classification, we provide type dependent APIs, and also
provide generic APIs which are commonly used in all the types. Furthermore,
we design more functional APIs that are realized by using these APIs. Part of
them is shown in Table 1. Using these D-sense design APIs, developers can write
codes concentrating on algorithmic behavior, and other low-level descriptions are
hidden. The details of the APIs and their implementation are shown in our web
site [17].

In Section 4, we will exemplify how typical protocols are implemented using
these APIs.



3.2 Seamless Integration of Simulated and Real networks

The NesC codes derived by the D-sense design API translator can be directly
executed on Mica Mote, or can further be translated into codes for QualNet sim-
ulator [18] written in C++ by the D-sense NesC translator. Also environmental
events and sensor node status logged automatically by the D-sense debugging
component in real environment and can be animated by the QualNet animator
(Figure 2) in which we provide special graphics to visualize residual amount
of battery and LED status (we assume Mica MOTE here) for more realistic
animation.

3.3 Protocol Debugging Support

We explain our powerful support facility for online debugging. Debugging sensor
node software in distributed environments requires many efforts to implement
the complicated communication schemes for confirming the node status. To mit-
igate these efforts, D-sense offers debug scenarios which enable developers to get
information about the nodes and to make debugging easy. At each node, we run
a “debug agent”, and at the base station we run a “debug controller”. Each de-
bug agent can monitor specified variables on that node, and communicate with
the debug controller. The debug controller operates those agents to realize the
scenario in distributed environment.

A debug scenario is composed of a condition followed by an action. As the
condition, we may refer to function names which become true when the cor-
responding function of the NesC code is called. We may also specify boolean
expressions over the variables of the NesC code. The action can be specified as
a set of statements which are executed when the condition is satisfied.

An important feature is that we may specify the “owners” of the variables and
functions that appear in the scenario. These owners may be a specific node or a
set of nodes, which are determined statically or dynamically. For the static case,
we may directly specify node ID as the prefix of each variable or function. If we
wish dynamic assignment to the node ID, we may use symbol $ in the condition,
which implies the first node that satisfies the condition. Also we may define a
set of nodes that satisfy specified conditions. This node set can be determined
statically by debug APIs, or can be defined dynamically in the action part.

In the following part, we give two examples of debug scenarios. The first one
is given below.

$.on_loop_detected ->|
nodeIDs = $.receive_packet->recent_visit_nodes;
foreach u in nodeIDs {

u.refresh_table();
}

The prefix of a variable or a function indicates its owner node. Those without
prefix are variables defined and held by the debug controller (at the base sta-
tion). Thus, this scenario means that if a sensor node (symbolized by $) calls



monitor if on_loop_detected 
is executed

send receive.packet->recent_visit_nodes
to debug controller

receive notificationl
from debug controller

execute command

receive receive.packet->recent_visit_nodes
from a debug agent

nodeIDs = receive.packet->recent_visit_nodes

foreach u in nodeIDs
    send notification to node u

Behavior Description
for Each Debug Agent (Sensor Node)

Behavior Description
for Debug Controller (Base Station)

Fig. 3. Distributed Execution of Debug Scenario

on loop detected function, then recent visit nodes (this is a list of nodes) included
in structure receive packet of node $ is set on the list variable nodeIDs of the base
station. Then each node specified in nodeIDs executes function refresh table().

This code can be used as an assertion and a post-condition in routing proto-
cols. Once a loop is detected by a sensor node in forwarding a packet, the routing
tables on the nodes that the packet recently traversed are refreshed.

The second example is a scenario for system monitoring and maintenance.

ave_energy(S = region(a,b)) < 0.2 ->|
foreach u in S {
u.beacon_interval = u.beacon_interval * 2

}

This scenario means that if the average residual energy of the nodes in the square
region defined by two corner points a and b (the set of the nodes in the region is
obtained by the debug API “region(a, b)”) is less than 20%, these nodes double
their beacon intervals to extend network lifetime of the region. ave energy(S) is
also a debug API that returns the average residual energy of the nodes in set S.

To realize these scenarios by the debug controller and the debug agents,
we need to derive protocols to exchange necessary data or notification, and
to execute statements. For example, the first example can be distributed over
the agents and controller as shown in Figure 3. Formally, each debug agent
(or controller) collects arguments to execute a statement that updates its own
variable. For example, the first statement of the action part,

nodeIDs = $.receive_packet->recent_visit_nodes;

is executed by the controller because nodeIDs is the variable of the controller.
However, the right-hand value is the variable held by the node symbolized by $.
Since we do not know which node becomes $, the agent on each node sends this
value to the controller whenever on loop detected function is executed, and the
controller updates the value of nodeIDs.



01:  get_planar_graph(graph g){
02:      len = get_neighbors(neighbor_IDs, sizeof(neighbor_IDs));
03:      for (i = 0; i < len; i++){
04:          nodeID = neighbor_IDs[i];
05:          for (j = 0; j < len; j++){
06:              nodeID' = neighbor_IDs[j];
07:              if (get_distance(myID,nodeID)

> max(get_distance(myID,nodeID'),
get_distance(nodeID,nodeID')))

08:                  g.remove_edge(myID,nodeID);
09:  }

(a) RNG Generation

01:  len = get_neighbors(neighbor_IDs, sizeof(neighbor_IDs));
02:  forwardID = get_my_ID();
03:  for (i = 0; i < len; i++){
04:      nodeID = neighbor_IDs[i];
05:      if(get_distance(nodeID,targetID)

< get_distance(forwardID,targetID))
06:          forwardID = nodeID;
07:  if(forwardID != myID) // forward toward a nearer node
08: send_unicast_packet(forwardID,packet);
09:  else peremeter_mode == true; // perimeter mode (omitted)

(b) Greedy Forwarding

Fig. 4. Example Implementation of GPSR

As seen in this very simple example, we need to define the language specifi-
cation to describe various scenarios design the architecture of controller, agents,
and network to execute the given scenario in distributed environment. More in-
teresting challenge is to execute the scenario in fully-distributed sensor networks
where no base station is present. In such a case, sensor nodes need to collaborate
to check the condition and execute the action, with less traffic and computation
costs. To determine policies of distributed execution, which optimize message
exchanges or some other objective functions, is part of our ongoing work.

4 Protocol Implementation Examples

In this section, we show example implementation of four existing WSN protocols;
GPSR, SPEED, BIP and Rumor Routing by using the D-sense design APIs.

GPSR[1] is a position-based protocol, where each sensor node forwards a
packet to the neighbor node nearest to the destination by using a planar graph.
Figure 4(a) denotes an example implementation of the algorithm to make a Rel-
ative Neighborhood Graph (RNG), which is a kind of well-known planar graph.
We can see that the algorithm is implemented simply by using APIs, such as list-
ing neighbor nodes (”get neighbor” in line 02) and getting the distance between
nodes (”get distance” in line 07). Figure 4(b) shows an example implementation
of routing process of GPSR. In this code, each node lists its neighbor nodes (line
01) and forwards a packet to the node nearest to the destination in the listed
nodes (lines 05–09).

SPEED[2] is also a position-based routing protocol. In SPEED protocol,
Stateless Non-deterministic Geographic Forwarding (SNGF) algorithm is used



01:  SNGF(message){
02:      my_length = get_distance(message->target_ID, myID); 
03:      len = get_neighbors(neighborIDs, sizeof(neighborIDs));
04:      num_FS_first = 0; num_FS_Second = 0;
05:      for (i = 0; i < len; i++){
06:          nodeID = neighbor_IDs[i];
07:          diff = my_length

- get_distance(message->target_ID, nodeID);
08:          if(diff > 0){
09:              if(diff / get_delay(myID,nodeID) > set_point)
10:                  FS_first[num_FS_first++] = nodeID;
11:              else
12:                  FS_second[num_FS_Second++] = nodeID;
13:          }
14:      }
15:      if(num_FS_first > 0){
16:          forwarding_probability = 0;
17:          forwarding_nodeID = FS_first[0]; 
18:          for(i = 0;i < num_FS_first; i ++){
19:              nodeID = FS_first[i];
20:              fp = get_probability

(get_distance(myNodeID,nodeID)
,get_queue_size(nodeID));

21:              if(fp > forwarding_probability){
22:                  forwarding_probability = fp;
23:                  forwarding_nodeID = nodeID;
24:              }
25: send_unicast_packet(nodeID, message);
26:      }
27:      else // forward toward the nodes in FS_second
28:  }

Fig. 5. Example Implementation of SPEED

to select a node which is nearer to the destination and handles lighter traffic
to forward packets. Figure 5 shows an example implementation of SNGF. A
node receiving a packet finds nodes that are nearer to the destination than itself
(lines 02–07) and classifies them into two groups. If the transmission efficiency
of a node is larger than a threshold set point, it is put into group FS first. The
other nodes are put into group FS second (lines 08–13). Then a node is selected
from the group FS first of nodes having better transmission efficiency according
to the length of the transmission path and the levels of congestion (lines 15–26).

We can see that GPSR and SPEED, both of which are position-based routing
protocols, can be implemented by using similar APIs.

BIP [3] is a centralized protocol managing sensor nodes in tree topology, and
is designed to minimize the total energy consumption of the network. Due to
space limitations, we omit the explanation. The interested readers may refer to
our web [17].

Rumor Routing [4] is a routing protocol based on mesh topology, and is
designed for accumulation and search of data. Figure 6 shows an example im-
plementation. In Rumor Routing, an agent manages event tables kept in sensor
nodes as follows. A node receiving an agent adds information written in the
agent to its event table. The information consists of the number of hops to the
event num hops, and the direction and the hop count from the node that sends
the agent source ID to each event (lines 01–02). At the same time, the node
puts information recorded in its event table to the agent and sends it to another
node. In this process, a node where agents have not visited long time is selected



01: on_agent_received(source_ID,agent_packet){
02:        event_table = set_event_distance(

agent_packet->num_hops,source_ID);
03:        agent_packet = set_event_info(

agent_packet, event_table);
04:        if(agent_packet->ttl-- > 0)
05: send_unicast_packet(

get_not_visited_neighbor(agent_packet),
agent_packet);

06:    }
07:
08: on_query_received(source_ID,query_packet){
09:        query_packet->ttl--;
10:        if(get_num_hops(event_table,query_packet->data)==0)
11:            doQuery(query_packet)
12:        else if (get_hops(query_packet->data) > 0)
13: send_unicast_packet(query_packet,

get_forwarding_direction(event_table,query_packet))
14:        else
15: send_unicast_packet(

get_not_visited_neighbor(query_packet),
queryPacket)

16:    }

Fig. 6. Example Implementation of Rumor Routing

(lines 03–06). When a node receives a query packet, the node searches the path
to the event queried by the packet using its event table (line 10). If the node
has the target event information itself, it processes the query, otherwise the node
searches a direction to forward it to (lines 11–13). If the node has no information
regarding the query at all, the query is forwarded to a node where the query
packet has not visited recently (lines 14–15).

At last, in order to show the effectiveness of the D-sense design APIs, we
counted the LOC (lines of code) of SPEED codes implemented (1) by using the
design APIs, (2) in C++ for QualNet simulator and (3) in NesC for MOTE
terminals.

(1) Design API (2) C++ (3) NesC
LOC 221 1044 1147

Without using APIs, the implementation required more than 1000 lines. On the
other hand, by using the APIs, the LOC is decreased to about 200 lines. Thus,
much effort dedicated to implementation was reduced.

5 Performance Evaluation

In order to validate the D-sense implementation and show its usefulness, we
evaluated the performance of the SPEED protocol in simulation and real envi-
ronment by using D-sense, and compared the performance in the simulation to
the performance reported in [2].

We used the same scenario as [2]. This scenario is aimed at testing the con-
gestion avoidance capability of the SPEED protocol. A few nodes are randomly
selected from the left side of the terrain and send periodic data to the base



station at the right side of the terrain. Each sender generates one CBR flow
with 1 packet/second. To create congestion, two randomly chosen nodes in the
middle of the terrain create a flow between them at half time of the 150 second
experiment. In order to evaluate the congestion avoidance capability under dif-
ferent congestion levels, the rate of this flow is increased by 10 from 0 up to 100
packets/second over several simulations. We have evaluated the delay and loss
ratio of the packets to the base station.

We show the experimental environment in Table 2. Because of the limitation
on the number of MOTEs, we evaluated the SPEED protocol with 25 nodes in
real environment. To compare the reported performance with the real environ-
mental performance, simulation experiments were also conducted in the same
configurations. We adjusted the wireless ranges of MOTEs and simulator ac-
cording to the network scale. Figure 7 shows a snapshot from the experiments
in real environment where MOTE terminals were uniformly arranged.

Table 2. Experimental Environment
Reported Simulation Real Env.

PHY & MAC 802.11 802.11 802.15.4
Bandwidth 200 Kb/s 200Kb/s, 250Kb/s 250Kb/s
Payload Size 32 Bytes 32 Bytes 32 Bytes
Terrain (200m, 200m) (200m, 200m), (20m, 20m)

(20m, 20m)
# of Nodes 100 100, 25 25
Node Placement Uniform Uniform Uniform
Radio Range 40m 40m, 8m 8m

Fig. 7. Arrangement of MOTEs in
Real Environment

Figure 8(a) shows the end to end delay. In the experiments with 100 nodes,
the performance observed in the simulation well follows the reported performance
although small difference is seen around 40 packet/sec congestion. We observed
the same level delays in the experiments with 25 nodes as observed in those with
100 nodes. In each congestion level, delays in real environment were smaller than
those in simulation.

Figure 8(b) shows packet loss ratio (the ratio of packets that failed to reach
the base station). In the experiments with 100 nodes, the simulation performance
is nearly equal to the reported performance. In the experiments with 25 nodes,
the packet loss ratio is greatly higher than that in the experiments with 100
nodes. This is mainly because each node had too few nodes in its neighbor table
to avoid the congestion area at the center of the network in the experiments with
25 nodes. In particular the packet loss ratio is much higher in real environment
than that in the simulation.

As shown in Figure 8, compared to the simulation results, we can see small
delays and large packet loss ratio in real environmental results. We attribute
these differences to large fluctuation of radio ranges in real environment. In



E2E Delay Under Different Congestion

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40 50 60 70 80 90 100
Congestion (packet/sec)

D
el

ay
 (m

se
c)

Reported Performance
Simulation 100 nodes
Simulation 25 nodes
Real Environment 25 nodes

(a) E2E Delay

MissRatio Under Different Congestion

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80 90 100
Congestion (packet/sec)

M
is

s 
Ra

tio
 (%

)

Reported Performance
Simulation 100 nodes
Simulation 25 nodes
Real Environment 25 nodes

(b) Packet Loss Ratio

Fig. 8. Performance of SPEED Protocol

real environment, nodes can receive beacons from further nodes and store the
node IDs in its neighbor table. Then, nodes send packets to those further nodes,
which have both lower delays and higher probability of packet loss. To solve this
problem, we should improve the scheme of neighbor table management. Nodes
which receive beacons do not add the IDs of the sender nodes to their neighbor
tables until they observe higher success ratio of beacon reception from those
nodes than a certain threshold.

E2E Delay Under Different Congestion

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80 90 100
Congestion(packet/sec)

D
el

ay
(m

se
c)

Real Environment 25 nodes
Modified Simulation 25 nodes
Simulation 25 node

(a) E2E Delay

MissRatio Under Different Congestion

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80 90 100
Congestion(packet/sec)

M
is

s R
at

io
 (%

)

Real Environment 25 nodes
Modified Simulation 25 nodes
Simulation 25 node

(b) Packet Loss Ratio

Fig. 9. Result of modified simulation

On the other hand, as shown in Figure 9, the simulation result gets closer
to the real environment one by enlarging the radio range and choosing a proper
radio model and height of antenna according to the logs obtained from the exper-
iments in real environment. This shows that we can realize realistic simulation
experiments that are closer to the experiments in real environment.

From these performance evaluations, we could validate the D-sense imple-
mentation. In addition, we could find some real environmental problems and



their causes, discuss their solutions, and improve reality of the simulation by
considering them. This shows the importance of implementing and evaluating
WSN protocols in real environment, and also shows that D-sense well supports
these activities.

6 Conclusion

In this paper, we have designed and developed an integrated environment called
D-sense for supporting development of WSNs. D-sense supports protocol design
by high-level design APIs. Also it provides seamless collaboration of simulated
and real networks for performance evaluation, and powerful distributed debug-
ging scheme. We have conducted performance evaluation of the SPEED proto-
col in simulation and real environment to show the effectiveness of D-sense. For
now, we have designed the specification of D-sense and implemented a part of its
functions. Our ongoing work includes developing a complete set of design/debug
APIs and related tools, and opening them to public domain.

References

1. Karp, B. and Kung, H. T.: GPSR: Greedy Perimeter Stateless Routing for Wire-
less Networks. In: 6th Annual International Conference on Mobile Computing and
Networking (MobiCom 2000), pp. 149–160 (2000)

2. He, T., Stankovic, J. A., Lu, C. and Abdelzaher, T.: SPEED: A Stateless Protocol
for Real-time Communication in Sensor Networks. In: 23rd International Confer-
ence on Distributed Computing Systems (ICDCS2003), pp. 46–55 (2003)

3. Wieselthier, J. E., Nguyen, G. D. and Ephremides, A.: On the Construction of
Energy-efficient Broadcast and Multicast Trees in Wireless Networks. In: 19th
Annual Conference on Computer Communications (INFOCOM2000), pp. 585–594
(2000)

4. Braginsky, D. and Estrin, D.: Rumor Routing Algorithm for Sensor Networks.
In: ACM International Workshop on Wireless Sensor Networks and Applications
(WSNA2002), pp. 22–31 (2002)

5. Perkins, C. and Royer, E.: Ad-hoc On-demand Distance Vector Routing. In: 2nd
IEEE Workshop on Mobile Computing Systems and Applications (WMCSA1999),
pp. 90–100 (1999)

6. Wei, W. and Zakhor, A.: Multiple Tree Video Multicast over Wireless Ad Hoc
Networks. IEEE Transactions on Circuits and Systems, vol. 17, no. 1, pp. 2–15
(2007)

7. Heinzelman, W. R., Chandrakasan, A. and Balakrishnan, H.: Energy-efficient Com-
munication Protocol for Wireless Microsensor Networks. In: 33rd Annual Hawaii
International Conference on System Sciences (HICSS-33), pp. 1–10 (2000)

8. Liyang, Y., Neng, W., Wei, Z. and Chunlei, Z.: GROUP: A Grid-Clustering Routing
Protocol for Wireless Sensor Networks. In: 2nd International Conference on Wire-
less Communications, Networking and Mobile Computing (WiCOM2006), pp. 1–5
(2006)

9. Werner-Allen, G., Swieskowski, P. and Welsh, M.: MoteLab: a Wireless Sensor
Network Testbed. In: 4th International Symposium on Information Processing in
Sensor Networks (IPSN 2005), pp. 483–488 (2005)



10. CitySense Project: CitySense - An Open, Urban-Scale Sensor Network Testbed.
http://www.citysense.net/

11. Madden, S., Franklin, M., Hellerstein, J. and Hong, W.: TinyDB: An Acquisitional
Query Processing System for Sensor Networks. ACM Transactions on Database
Systems (TODS), vol. 30, no. 1, pp. 122–173 (2005).

12. Bonnet, P., Gehrke, J. and Seshadri, P.: Towards Sensor Database Systems. In:
2nd International Conference on Mobile Data Management (MDM2001), pp. 3–14
(2001)

13. Levis, P. and Culler, D.: Mate: a Tiny Virtual Machine for Sensor Networks. In:
10th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS-X2002), pp. 85–95 (2002)

14. Luo, L., Abdelzaher, T. F., He, T. and Stankovic, J. A.: EnviroSuite: An Envi-
ronmentally Immersive Programming Framework for Sensor Networks. Trans. on
Embedded Computing Sys., vol. 5, no. 3, pp. 543–576 (2006)

15. Al-Karaki, J. N. and Kamal, A. E.: Routing Techniques in Wireless Sensor Net-
works: a Survey,” IEEE Transactions on Wireless Communications, vol. 11, no. 6,
pp. 6–28 (2004).

16. Ratnasamy, S., Karp, B., Yin L., Yu, F. and Estrin, D: R. Govindan and S. Shenker,
GHT: A Geographic Hash Table for Data-centric Storage in Sensornets. In: First
ACM International Workshop on Wireless Sensor Networks and Applications
(WSNA 2002), pp. 78–87 (2005)

17. D-sense Web, D-sense: An Integrated Environment for Algorithm Design and Pro-
tocol Implementation in Wireless Sensor Networks, APIs. http://www-higashi.ist.
osaka-u.ac.jp/software/WSN/D-sense/.

18. Scalable Network Technologies, Inc., “Qualnet Simulator,” http://www.
scalable-networks.com/.


