
A Comprehensive Test Strategy
for Network Protocols in Diverse Environment

Akihito Hiromori∗, Hirozumi Yamaguchi∗ and Teruo Higashino∗
∗ Graduate School of Information Science and Technology, Osaka University

1-5 Yamadaoka, Suita, Osaka, Japan 565-0871
{hiromori,h-yamagu,higashino}@ist.osaka-u.ac.jp

Abstract—In order to analyze important properties of network
protocols, such as robustness and applicability, we may need
exhaustive tests to observe effects of various factors under
different settings. For recent protocols on dynamic, large-scale
and environment-aware networks such as wireless sensor net-
works and mobile ad-hoc networks, we should consider many
factors due to diversity of hardware profiles, upper/lower layer
protocols and physical environments. In this paper, we propose a
comprehensive test method to analyze the effect of (usually 10 or
more) factors on such network systems. Our method takes a set of
factors to be considered and their (representative) domain values
as inputs, analyzes their effects on the systems, and determines
dominant factors that have impact on the performance and their
interactions. Instead of applying exhaustive tests that require
all the combinations of domain values, we take a step-wise
approach that examines step-by-step suspected sets of factors,
which requires fewer combinations. We also justify this approach
based on a reasonable fault model. The approach also contains
an analytical method to identify the performance characteristics.
Through realistic case studies, we show that we could find sets
of dominant factors in wireless networks systematically.

Index Terms—wireless network; performance evaluation; net-
work simulation

I. INTRODUCTION

Network protocols and applications originally involve some
protocol parameters, system state variables, and many optional
functions. Some of them take wide range values and some
others have binary states. Especially, environments for wireless
sensor networks and mobile ad-hoc networks are very diverse.
They may be operated with different node mobility (speed and
movement patterns, if some of nodes are mobile) and node
density. There may also be numerous patterns for sensor node
deployment according to the targeted geography. Furthermore,
sensor nodes may have different battery lifetime and wireless
ranges, and their hardware profiles may be heterogeneous. This
means that, unlike the case for conventional wired network
systems, we may need to consider more environmental factors
for testing such networks [1], [2].

Hereafter, for simplicity of notations, parameters of which
the tester would like to vary their values are called factors
and their domain values are called levels. This terminology is
taken from the design of experiments [3], which is discussed
in Section II. Then each combination of levels of factors is
called a test case. In popular performance evaluations, we set
representative values (levels) for non-interested factors and
vary the levels of interested factors. Example strategies to
vary these levels include “best-guess” that changes the level

of the most influent factor after each test and “one-factor-
at-a-time” that changes the level of only one factor and sets
the others to the pre-defined baseline levels at each test [3].
These approaches do not require so many test cases, but we
cannot find out such factors that together reveal distinctive
performance characteristics of the implementation under test.
In other words, these factors miscellaneously interact with
each other in affecting the performance and we call them
dominant factors.

Identifying dominant factors and checking their effects on
the system performance and behavior are very important for
protocol designers, developers, testers and anyone who is
engaged in design and development. There have been a few lit-
erature reporting that particular combinations of performance
factors affect the entire performance of systems. For example,
[4] investigates how ad-hoc routing protocols, MAC protocols,
and mobility models affect network performance together.
The results have shown that there is a strong relationship
between ad-hoc routing protocols and MAC protocols. Thus,
the paper has concluded that a pair of these protocols should
be chosen carefully. In addition, [5] considers not only above
three factors but also network traffic and QoS architecture as
factors and performs statistical analysis to these five factors
by a network simulator. This has also concluded that ad-
hoc routing protocols and MAC protocols have a strong
relationship for packet delay. Ref. [6] applies many factors
to statistical approaches like ANOVA to find parameters that
affect packet delivery ratios. The paper has shown that the
number of sources, source-destination pairs, packet transmis-
sion rate, and propagation model have much greater impact on
packet delivery ratios than node speed, node pause time and
packet size, which had been considered to have more impact
on those. Similar attempts have been made to show this kind
of dependencies among multiple factors [7], [8].

Some of these methods require all possible combinations
of levels to find dominant factors and reveal the particular
performance characteristics. Since general analytical methods
require a certain number of test results, they do not consider
reducing the number of test cases. Such exhaustive approaches
are not realistic for evaluating performance of networks (es-
pecially wireless networks). The reasons are as follows: First,
running a single simulation or a single experiment of large-
scale wireless networks may consume long time. Secondly, for
N factors, each of which has M discrete values (levels), there
exist MN test cases.

In this paper, we propose a comprehensive test method
to analyze the effect of (usually 10 or more) factors on
network protocols in an efficient and systematic manner. The
implementation under test (IUT) is a wireless network system
that is composed of many nodes, which therefore includes
many possible patterns for node deployment and their mobility,
heterogeneity of hardware profiles, choices of protocols and
their optional parameter settings. Since wireless network sim-
ulations or experiments take long time or need much effort, we
try to find out dominant factors with fewer test cases. In order
to find out dominant factors with fewer test cases, we assume a
reasonable fault model so that we can take a stepwise approach
that avoids examining all possible test cases. Furthermore, to
enable quantitative and automatic detection of factor effects
on system performance, we introduce the notion of rank
correlation to characterize performance dynamics and provide
an appropriate decision policy. We have also conducted two
experiments to validate the effectiveness of our method. First,
we have tested FTP transmission over TCP on MANET, and
could identify high correlation between the TCP version and
TCP transmission buffer size. Secondly, we have tested LAR
[9], the location aided routing, under different configurations
of node deployment, void area sizes and locations, and could
find strong relationship among communication range, forward-
ing zone size, node density and void area size.

II. RELATED WORK AND COMPARISON

Combinatorial tests have been investigated for long time,
and its concept has been incorporated into a lot of industrial
research and development. The traditional and well-known
approach for testing effects of multiple factors is known
as factorial experiments in the experimental design. In the
factorial experiments, the factorial design considers all (or
a part of) combinations of the levels, and the experimental
results by these combinations are analyzed using regression
methods, ANOVA (analysis of variances) or some others to
observe effects of multiple factors. The well-exploited factorial
design is the 2k factorial design, which deals with k factors
and two levels for each one. These levels may be qualitative
like “the RWP model” or “the random walk model” in the
mobility model selection factor, or may be quantitative like
“100” or “200” in the number of mobile nodes.

In Ref. [7], this 2k factorial design and ANOVA have been
applied to analyze the behavior of MANETs. Also in Ref. [5],
MANETs have been tested and main effects and interaction of
five factors have been analyzed. Some others target different
network architectures and protocols [6], [8], [10].

Compared with the above work, our contribution is sum-
marized as follows. First, we provide a comprehensive test
strategy with multiple factors and multiple levels for network
protocols. Taking into account a reasonable fault model, we
try to reduce the total number of test cases. Meanwhile, the
focus of the above articles is to reveal or prove particular
performance characteristics of particular networks. Therefore,
they do not provide methodologies but apply existing ana-
lytical methods like ANOVA to analyze the main effect and

TABLE I
PERFORMANCE FACTORS FROM EACH NETWORK LAYER

Layer Protocol Factor Level
MAC IEEE802.11 QueueLength 50, 100, 200 (Packets)

Transport UDP PacketSize 256, 512, 1024 (Bytes)
Application CBR Rate SendRate 10, 20, 40 (kbps)

interactions with help of design experts and with the result
of almost all test cases. In the design of experiments, some
extensions of 2k factorial design have been considered to deal
with multiple factors and multiple levels. This method can not
only find all sets of dominant factors but also show how these
sets affect the performance in detail. Therefore, they do not
consider reducing the number of test cases since analytical
methods require a certain number of test results. On the other
hand, our method aims to find only sets of dominant factors
that affect the performance strongly without a huge set of
test cases. Secondly, we formally define the dominant factors
and their interactions, and performance characteristics using
the rank correlation coefficient. By these definitions, we can
provide a systematic test strategy. Thirdly, these advantages
are shown by a realistic case study. We have investigated a
case study to see the effects of factors on data transmission
over TCP on MANETs.

As far as we know, such a comprehensive test strategy in
which factor effects and their interactions are automatically
analyzed with the reasonable number of test cases has not
been considered in the existing literature.

III. PRELIMINARIES

A. Problem Formulation

We consider N attributes F = (f1, f2, ..., fN) which are
considered to affect the performance of the target system.
They are called performance factors (or simply factors). A
performance factor may be a parameter of a protocol or system
such as TCP segment size and maximum wireless range. It
may be environmental settings such as a mobility model or
even a choice of a protocol (e.g. a choice of routing protocols).
A subset of the factors is described as Fs(Fs ⊆ F). The
difference between sets F and Fs is described as F\Fs. We
assume that the value domain of each performance factor f is a
set of discrete values which are called levels, and L(f) denotes
the set of levels of f . A test case is an assignment of levels to
performance factors, and a set of test cases is called a test suite.
A test case that assigns levels to the factors of F is called a test
case over F . The implementation under test (IUT) is modeled
as I taking a test case t as an input and returns the result I(t)
for the test case. I(t) is called a performance measurement
value such as the average throughput and the average end-
to-end delay, which can be obtained by (single or replicated)
simulations or experiments under the given test case. Table
I shows an example of performance factors and levels. We
consider evaluating the throughput of UDP transmission with
CBR over IEEE802.11 MAC and PHY, varying the CBR
rate, UDP packet size and the queue length in IEEE802.11
MAC. Then we choose the three parameters as performance
factors, and prepare three levels for each performance factor.
A test case for this can be an assignment like (QueueLength,

PacketSize, SendRate) = (100, 1024, 10), and 27 (= 33) test
cases are possible as a total.

Our objective is to find out all sets of dominant factors.
Even though it seems difficult to formally define the properties
of such sets in general, we try to formalize the problem. We
introduce several relations for simplicity of descriptions.

Definition 1: (Fs-equivalence of test cases)
Two test cases t and t′ over F are said to be Fs-equivalent
with respect to the subset Fs iff the assignments of levels by
t and t′ to the factors of Fs are equivalent (and we do not
care about levels assigned to the other factors). For example,
t1 = {1, 2, 3} and t2 = {3, 2, 3} are Fs-equivalent where F
and Fs are {f1, f2, f3} and {f2, f3} respectively. Also they are
said to be Fs-inequivalent with respect to Fs iff there exists
at least one factor f of Fs such that the levels assigned to f
by t and t′ are different.
We introduce binary relations ≡Fs and 6≡Fs to represent
Fs-equivalence and Fs-inequivalence, respectively. Next, we
introduce “reductions” of test cases and suites.

Definition 2: (Fs-reductions of test cases/suites)
Test case ts over the subset Fs is said to be Fs-reduction of
a test case t over F iff t includes ts in its part. For example,
ts = {2, 3} is the Fs-reduction of test case t = {1, 2, 3} where
F and Fs are {f1, f2, f3} and {f2, f3} respectively. Similarly,
a test suite Ts over the subset Fs is said to be Fs-reduction
of a test suite T over F iff for any ts ∈ Ts, there exists a test
case t in T where the Fs-reduction test case of t is equivalent
to ts and for any t′ ∈ T , there exists a test case t′s in Ts where
the Fs-reduction test case of t′ is equivalent to t′s.

Definition 3: (ts-homogeneity of test suite)
For test case ts over the subset Fs, a test suite T over F
is said to be ts-homogeneous iff for any test case t′s in Fs-
reduction test suite of T , t′s equals ts. Informally, if T is
ts-homogeneous, then T consists of test cases that include ts
as their parts.

Definition 4: (Fs-completeness of test suite)
Hereafter, we let F ∗ denote the test suite that contains all
possible test cases over F . This is called complete test suite
over F . A test suite T is said to be Fs-complete iff Fs-
reduction of T is complete.

Our definition of dominant factors is following.
Definition 5: A subset Fs is suspected to be a set of dom-

inant factors iff we cannot observe “distinctive” performance
characteristics for a variety of test case pairs where each pair
of t and t′ satisfies t≡Fst

′.
In other words, we cannot observe distinctive performance
characteristics under the test cases that assign the same levels
to the factors of Fs. The test cases shown in Table II satisfy
the above conditions with respect to Fs = {f1, f2}. If we do
not see any change of performance characteristics using the
test cases, we can expect that f3 and f4 are not dominant
factors.

We might also consider another definition that is more
straightforward.

Definition 6: A subset Fs is suspected to be a set of
dominant factors iff we can observe “distinctive” performance

TABLE II
A EXAMPLE TEST SUITE TO VALIDATE DOMINANT FACTORS

f1 f2 f3 f4

t1 1 1 1 1
t2 1 1 1 2
t3 1 1 2 1
t4 1 1 2 2

characteristics for a variety of test case pairs where each pair
of t and t′ satisfies t 6≡Fst

′ and t≡F\Fs
t′.

The test cases shown in Table II satisfy the above condition
with respect to Fs = {f3, f4}. If we can observe significant
change of performance characteristics with the same test cases,
we can expect that f3 and f4 are not dominant factors.

B. Challenges in Finding Dominant Factors

To find sets of dominant factors according to the above
definition, we need to do the followings; (i) we may need
to apply many tests to the target system to examine if each
possible Fd is a dominant factor or not, and (ii) we need to
identify “distinctive” performance characteristics for given two
test cases.

The performance measurement value I(t) for a single test
case t may be an aggregated value obtained from a number of
simulations or field experiments with settings determined by
test case t. For example, let us assume that I is the average
throughput of TCP connection over MANET. Then for each
given test case t, we may repeat simulations with the settings
determined by t varying random seeds to observe the well-
averaged value. This indicates that we need a considerable
amount of time to get I(t) for each t. In addition, in large-
scale ad-hoc wireless networks, each simulation itself may
take long time since it consumes much computer resources
to calculate collision by interference in geographical region,
mobility of nodes and so on. Also field experiments need much
more efforts to set up and control wireless terminals in real
environments. Consequently, obtaining each I(t) needs a con-
siderable amount of time even though simulation technologies
have been improved recently and computing capability has
grown rapidly.

Also, for the second problem, we should provide a reason-
able and deterministic policy to observe the distinctive perfor-
mance characteristics semi-automatically. In other words, we
should design the test cases and the corresponding decisions
without ambiguity. This is deeply related with the “good” test
case selection under the limitation of their total amount.

Considering the above discussions, our goal is to design
a comprehensive method to find out all sets of dominant
factors with a reasonable number of possible test cases. In the
following section, we exemplify dominant factors. After that,
we briefly introduce pairwise test generation methods that are
used in a part of our algorithm.

C. Example of Dominant Factors

In this section we exemplify dominant factors. We use a
well-known result on the throughput fluctuation in TCP trans-
mission over MANET [11], [12]. In more details, TCP over
MANET may become unstable due to frequent retransmission

1 2 3 4 5 6 7 8 9 10 11 12 13

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

factor id

ra
te
 o
f
c
h
a
n
g
e

Fig. 1. Ranges of Normalized Jitters (in varying levels of single factor)

1 2 3 4 5 6 7 8 10 11 12 13

0
.5

0
.0

0
.5

1
.0

factor!id

c
o
rr
e
la
ti
o
n

Fig. 2. Spearman Rank Correlation Coefficients (SRCC); on i-th label of
X-axis, SRCCs of jitters from test suites where AdvWin and factor i are
equivalent are plotted.

caused by MAC level collisions, route discovery in the network
layer, or network partitions by node mobility. In previous
researches, it has been reported that the control of the TCP
advertise window and the TCP segment size are very important
for stable communication. To evaluate the stability of TCP
connections, we confirm that the TCP advertise window and
the TCP segment size form a set of dominant factors. Through
simulation experiments, we have measured the median of
packet jitters at the receiver as the performance measurement.
We have conducted simulations with the performance factors
and their levels presented in Table III. In these simulations,
only one TCP connection between two end nodes located at
the opposite corners is established through stationary nodes
deployed in the simulation field.

We first examine if each single factor is in dominant factors
or not. For this purpose, we show the dynamic range of the
packet jitters under the test cases where only the levels of a
single factor are different. For each factor fi, we prepare a
test suite Ti where for each test case we set the representative
levels to the factors except fi and one of the levels to
fi. Therefore, Ti is a test suite that satisfies t≡F\{f}t

′ for
∀t, t′ ∈ Ti. Fig. 1 shows a box-whisker chart in which the
measured jitters using Ti are plotted on the i-th label of the
x-axis. The jitters plotted on the i-th label are normalized by
the minimal value among them and the box shows their first

TABLE III
PERFORMANCE FACTORS AND THEIR LEVELS (FOR TCP OVER MANET

WITH DSR AND IEEE802.11MAC)

MAC Sub-Layer (IEEE 802.11 DCF)
Factor ID Factor Levels

1 QueueLength 50, 100, 200, 400
2 CWMin 31, 63, 127, 255
3 CWMax 1023, 2407, 4095, 8191

Network Layer (DSR)
Factor ID Factor Levels

4 RouteCacheTimeout 4, 8, 16, 32, 300
5 SendBufferTimeout 15, 30, 60, 120
6 SendBufferSize 16, 32, 64, 128
7 EnableRingSearch true, false

Transport Layer (TCP Tahoe)
Factor ID Factor Levels

8 SegmentSize 256, 512, 1024, 2048
9 AdvWin 256, 512, 2048, 4096, 8192, 16384
10 RtoMin 0, 1, 2, 4
11 RtoMax 20, 40, 80, 160

Environmental Settings
Factor ID Factor Levels

12 NodeSize 4, 8, 16
(number of nodes in

100m × 100m)
13 RegionSize (m × m) 200 × 200, 400 × 400, 600 × 600

and third quarters. From this graph and Definition 6, we can
say that { Factor8 (SegmentSize) }, { Factor9 (AdvWin) } and
{ Factor13 (RegionSize) } are dominant factors since we can
observe distinctive performance variance on the 8th, 9th and
13th labels of the x-axis1.

Then we focus on the correlation of AdvWin and Seg-
mentSize to see that they form a set of dominant factors as
reported in Refs. [11] and [12]. According to Definition 5,
in order to confirm that we cannot observe the distinctive
performance characteristics under any pair of test cases t and t′

where the levels of AdvWin and SegmentSize are equivalent i.e.
t≡{AdvWin,SegmentSize}t

′, we have measured the jitters for a
variety of test suites where satisfy T≡{AdvWin,SegmentSize}T

′

and T . We have also calculated the Spearman rank correlation
coefficient (SRCC) of them. To explain the set of dominant
factors intuitively, here we roughly say that SRCC represents
a relationship between the performance measurement values
measured by two test suites T and T ′, and its value is close
to -1 or 1 if these values have strong relationship (that is, T and
T ′ cause no or little distinctive performance characteristics),
and close to 0 otherwise (that is, T and T ′ cause distinctive
performance characteristics).

Fig. 2 shows a box-whisker chart of coefficients where
on i-th label of x-axis the SRCCs of jitters from each pair
of test suites are plotted where AdvWin and factor i are
equivalent. From this result, we can see that on the 8th
label that plots the cases where AdvWin and SegmentSize
(factor 8) are equivalent, the first quarter (1Q) is around 0.6.

1According to Definition 6, as Ti, we actually need to consider all the
possible test cases that satisfy t≡F\{f}t′ and ∀t, t′ ∈ Ti. Meanwhile for
the purpose of exemplifying dominant factors, we only consider single Ti

using default (representative) levels.

TABLE IV
EXAMPLE OF PAIRWISE TEST SUITE

Case QueueLength PacketSize SendRate
1 100 1024 10
2 200 256 40
3 50 512 10
4 200 1024 20
5 50 256 20
6 100 512 40
7 200 256 10
8 50 1024 40
9 100 256 20
10 200 512 20

Meanwhile, for the other parameters, the first quarter is around
0.3. This means that using test suites which are equivalent
over {AdvWin, SegmentSize}, we cannot see distinctive
performance characteristics because SRCCs are high. From
this fact, we can say that {AdvWin, SegmentSize} is a set
of dominant factors.

D. Pairwise Test

For efficient test case generation, we use the idea of pairwise
test in part of our algorithm. Although using the pairwise
method is not essential to reduce the test cases in our case,
we explain it to clarify our algorithm explanation given later.

In traditional software development, it is considered that
specific combinations of parameters can reveal most faults.
Then a k-wise test suite, in which any k-tuple of parameters
can be found, has been applied for such purpose. Even though
the size of k depends on the scale of software, a k-wise test
suite is considered effective through several case studies [13].
In other application domains, it has been reported that k-wise
test methods are applied to functional test of compilers [14]
and interoperability test of network interfaces [15].

Formally, for a test suite R and a positive integer k
(1 ≤ k ≤ N), if any assignment of levels to k-factors appears
in at least one of test cases in R, then R is called a k-wise test
suite. For example, we consider the previous example of Table
I with three performance factors (from the MAC sub-layer, the
transport layer and the application layer) each of which has
three levels. An example 2-wise test suite is shown in Table
IV. We focus on two factors, QueueLength and PacketSize.
Their possible assignments are followings; (50, 256), (100,
256), (200, 256), (50, 512), (100, 512), (200,512), (50,1024),
(100,1024) and (200, 1024), and we can find them in test cases
No. 5, 9, 2 (and 7 also), 3, 6, 10, 8, 1 and 4, respectively.
Here the important feature is that for any pair of factors,
that is, (QueueLength, PacketSize), (QueueLength, SendRate)
or (PacketSize, SendRate), any assignment to the pair can be
found in at least one of the test cases if the test suite is a
pairwise test suite. The complete test suite includes 27 (33)
test cases, while this 2-wise test suite includes only 10 test
cases.

IV. PROPOSED TEST METHOD

A. Basic Idea and Outline

1) How to Generate Reasonable Test Cases for Dominant
Factor Examination: For a given subset Fd (⊆ F), we prepare

TABLE V
A PART OF TEST SUITE TO EXAMINE Fd (Fd = {f1, f2})

f1 f2 f3 f4

t0 0 0 2 0
t1 0 0 2 1
t2 0 0 2 2
t3 0 1 1 0
t4 0 1 1 1
t5 0 1 1 2
t6 1 0 2 0
t7 1 0 2 1
t8 1 0 2 2
t9 1 1 0 0
t10 1 1 0 1
t11 1 1 0 2
· · · · · ·
t24 2 2 1 0
t25 2 2 1 1
t26 2 2 1 2

f1 f2 f3 f4

t27 0 0 1 0
t28 0 0 1 1
t29 0 0 1 2
t30 0 1 0 0
t31 0 1 0 1
t32 0 1 0 2
t33 1 0 1 0
t34 1 0 1 1
t35 1 0 1 2
t36 1 1 2 0
t37 1 1 2 1
t38 1 1 2 2
· · · · · ·
t51 2 2 2 0
t52 2 2 2 1
t53 2 2 2 2

TABLE VI
{f4}-REDUCTION OF TEST SUITE OF TABLE V

Case ID f1 f2 f3

u0 0 0 2
u3 0 1 1
u6 1 0 2
u9 1 1 0
· · · · · ·
u24 2 2 1

f1 f2 f3

u27 0 0 1
u30 0 1 0
u33 1 0 1
u36 1 1 2
· · · · · ·
u51 2 2 2

a test suite Td over F satisfying the following conditions to
examine if Fd is a set of dominant factors or not.

1) Td is Fd-complete. This means that, for any combination
of levels of factors in Fd, Td contains at least one test
case that contains the combination.

2) ∀f ∈ F\Fd, ∀u ∈ {f}-reduction of Td;
a) ∃u′ ∈ {f}-reduction of Td;

(u≡Fd
u′) ∩ (u 6≡F\(Fd∪{f})u

′).
We ignore a factor f that is not in Fd. Then for
any test case t, there exists a test case u′ where u
and u′ have the common assignment of levels to
Fd and have different assignments of levels to at
least one factor not in Fd (except f).

b) {u} × {f}∗ ∈ Td where Ti × Tj denotes the set
of all test cases generated by the product of two
(partial) test suites Ti and Tj .
This means that, for u and f , all the combinations
of u and the levels of f are in Td.

As an example, let us assume F = {f1, f2, f3, f4}, Fd =
{f1, f2}, and L(fi) = {0, 1, 2} (1 ≤ i ≤ 4). In Table V, we
show a part of test suite Td. We can see that this Td satisfies
condition 1 since all the possible combinations of levels of
f1 and f2 appear. Also its {f4}-reduction is shown in Table
VI where each ui corresponds to ti, ti+1 and ti+2. We can
see that condition 2-(a) is satisfied for the case of f = f4

since ui≡{f1,f2}ui+27 and ui 6≡{f3}ui+27 for i = 0, 3, 6, .., 24.
Similarly, condition 2-(b) is satisfied since for each ui of {f4}-
reduction, {ui}×{f4}∗ corresponds to test cases ti, ti+1 and
ti+2 in Td. In the same way, we can generate the rest of Td

that satisfies condition 2 for the case of f = f3 (we omit those
test cases for the limitation of space).

f4 0 1 2

I:
 p

er
fo

rm
an

ce
 m

ea
su

re
m

en
t v

al
ue

I(t0)

I(t1)

I(t2)

I(t27) I(t29)

 0 1 2

I:
 p

er
fo

rm
an

ce
 m

ea
su

re
m

en
t v

al
ue

I(t0)
I(t1)

I(t2)
I(t27)

I(t28) I(t29)

f4

(a) (b)

I(t28)

If4(u27)

If4(u0)

If4(u27)

If4(u0)

Fig. 3. Comparison of Performance Sequences ~If4 (u0) =

(I(t0), I(t1), I(t2)) and ~If4 (u27) = (I(t27), I(t28), I(t29))

By condition 1, Td is ensured to have test cases that include
all the possible assignments of levels to Fd. Additionally with
condition 2-(a), for each level assignment to Fd, it is ensured to
have at least one pair of Fd-equivalent test cases with different
level assignments to the factors of F\Fd. If Fd-equivalent
test cases with a common level assignment to Fd do NOT
reveal “distinctive” performance characteristics, we can say
that Fd is suspected to be a set of dominant factors according
to definition 5.

The challenge here is how we generate such a set of
test cases that satisfy condition 1 and condition 2-(a) with
reasonable “resolution” and with a reasonable number of test
cases. The “resolution” requirement is that for each level
assignment to Fd, we should have a variety of assignments
to F\Fd to examine the effects of F\Fd excluding the effects
of Fd. To generate such test cases, we partly apply k-wise
test methodology. Actually, for Fd with k factors, (k + 1)-
wise test suite over F\{f} satisfies condition 1 and condition
2-(a) since the test suite is Fd-complete from the definition of
the k-wise test suite and there exist at least two test cases t
and t′ where t≡Fd

t′ and with different assignments to a factor
of F\(Fd ∪ {f}). This is the idea of generating test cases to
examine a given set Fd of factors.

2) How to Identify Performance Characteristics: We ex-
ploit condition 2-(b) to identify performance characteristics
caused by Fd. If Td satisfies condition 2-(b), the combination
of each {f}-reduction test case (say u) and each level of f is
in Td. This means that we can obtain the “sequence” of test
results by applying the products of u and all the levels of f .
Such a sequence is called a performance sequence. Hereafter
~If (u) denotes a performance sequence obtained by varying
the levels of factor f and the assignment of levels to the other
factors is defined by test case u. In other words, this sequence
is composed of each I(t) where t is in u-homogeneous test
suite. To identify performance characteristics more clearly, for
each pair of {f}-reduction test cases u and u′ where u≡Fd

u′,
we compare ~If (u) and ~If (u′) by calculating their Spearman
Rank Co-relation Coefficient (SRCC in short) [16]. SRCC is
given below;

ρ =
∑n

i=1

(
ri − n+1

2

) (
si − n+1

2

)√∑n
i=1

(
ri − n+1

2

)2 (
si − n+1

2

)2
(1)

where ri is the rank of xi (incremental order) in x1, ..., xn and
si is the rank of yi (incremental order) in y1, ..., yn. In order
to obtain SRCC of two performance sequences, we let i-th
values of performance sequences ~If (u) and ~If (u′) correspond
to xi and yi, respectively. The coefficient is between -1 and
1. If it is close to 0, the relationship between two sequences
is weak. If the coefficient is close to -1 or 1, there is a strong
relationship between them. In this case, the factors of Fd affect
the performance in the sense that this similarity is brought
by sharing the level assignment to Fd. For example, in Fig.
3, we show two sequences ~If4(u0) = (I(t0), I(t1), I(t2))
and ~If4(u27) = (I(t27), I(t28), I(t29)). In Fig. 3 (a), their
SRCC is not close to -1 or 1 since the ranks of ~If4(u0) and
~If4(u27) are (2,3,1) and (3,1,2), respectively. This means that
these different treads of performance dynamics are brought
by other factors than f1 and f2, and in this sense {f1, f2}
is not dominant over the others. Meanwhile, in Fig. 3 (b), it
is high since their ranks are (3,2,1). This means that {f1, f2}
may be dominant over the others. To confirm the domination
of Fd with the other assignment, we calculate the coefficient
of ~If (u) and ~If (u′) for every pair of factor f ∈ F\Fd

and u, u′ ∈ {f}-reduction of Td, and we take the minimum
coefficient among them. If this minimum coefficient is still
above the predetermined threshold, then the coefficient of any
other pair is larger than the threshold, and we can prove that
the assignment of common levels to the factors of Fd have
strong effect to make the performance characteristics very
similar. Before this process, we should choose an appropriate
value to the predetermined threshold for the target system
so that we can know whether there is a strong relationship
between two sequences. Otherwise, we may not be able to
find sets of dominant factors, which are useful for performance
evaluation. This is the idea on identifying the effects of Fd.

3) How to Reduce the Total Number of Test Cases: It is
still too expensive with respect to the number of test cases if
we generate an independent set of test cases for each possible
Fd, since we have

∑
i=1..n

N !
i!(N−i)! candidate sets of factors

and for each candidate set we need a certain amount of test
cases. Then we take a stepwise approach. In this approach,
at step k we examine the candidate sets with k factors,
but non-suspected sets have already been excluded using the
results of examination at the previous step k − 1. However,
to employ such a stepwise approach where the candidate sets
are narrowed down at each step, we need to justify the cut-
down process. In our case, we assume the following reasonable
property as a fault model.

Property 1: (Fault Model) For any set of k dominant fac-
tors, at least one subset of k−1 factors is also a set of dominant
factors.
This is in general true in the following reason. We do not
assume that specific assignment of levels drastically increases
or decreases the performance. Instead, we assume that each
dominant factor has impact on the performance by itself
to some or a great extent. For example, in many types of
communications, multiplicity of packet size and bitrate should
not be greater than the channel capacity, and the throughput

will decrease gradually beyond this capacity. In this case,
larger packet size itself (or higher bitrate as well) may increase
the throughput. Assuming the above property, first, each set
of a single factor is examined. Then for each Fd of k-factors
that is suspected to be a set of dominant factors, we examine
each F ′

d of k + 1 factors where F ′
d ⊃ Fd. This contributes

to enable the stepwise examination starting from k = 1 and
to reduce the number of test cases compared with some other
factorial design methods that need to apply all or a part of
combinations before analysis.

B. Algorithm Description

Our test procedure takes as inputs (i) a given set F of
factors, (ii) a given set L(f) of levels for each factor f ∈ F
and (iii) the target system I that is a function of a test case.
We assume |F | > 2, and we introduce a parameter k and a
family DSk of sets over F (i.e. DSk ⊆ P(F)). DSk consists
of sets of k dominant factors, and

∪
k=1..|F | DSk is the output

of the algorithm. We let Tk denote a test suite over F used in
the k-th iteration of the algorithm.

Initially, we start the algorithm with k = 1, DS1 =∪
f∈F {{f}}, DSi = ∅ (i ≥ 2) and T0 = ∅. The formal

description of the test procedure is given as follows. We note
that later we will validate this algorithm according to the
discussion in Section IV-A.

1) We prepare the test suite which consists of test cases
derived by the production of (i) the complete test suite
over Fd ∈ DSk where Fd is a candidate set of factors
to be examined (DSk has been determined by the (k-
1)-th iteration), (ii) 2-wise test suite over F\(Fd ∪{f})
(denoted as R), and (iii) the complete test suite over
{f}. To exclude the same test cases, we generate only
the test cases that are not included in Tk−1.

Tk ← Tk−1 ∪

 ∪
Fd∈DSk,f∈F\Fd

F ∗
d ×R×{f}∗


2) We apply each test case t of Tk\Tk−1 to the target

system to obtain I(t).
3) For each pair of f ∈ F and test case t′ in {f}-reduction

of Tk, we obtain the performance sequence ~If (t′).
4) For each f ∈ F , each Fd ∈ DSk and test cases t′ and

t′′ in {f}-reduction of Tk where t′≡Fd
t′′, calculate the

Spearman rank correlation coefficient (SRCC) of two
performance sequences ~If (t′) and ~If (t′′). This SRCC
is denoted by C[~If (t′), ~If (t′′)].

5) For each Fd ∈ DSk, we define

min[≡Fd
]

= min{ abs(C[~If (t′), ~If (t′′)]) |
∀f ∈ F, ∀t′, t′′ ∈ {f}-reduction of Tk, t′≡Fd

t′′ }

where abs(x) is the function that returns the absolute
value of x. For each Fd ∈ DSk, we let F+1

d denote each
set of factors where F+1

d ⊃ Fd and |F+1
d | = k + 1. For

each F+1
d , if min[≡F+1

d
] ∼ min[≡Fd

] and min[≡Fd
] <

Thhigh where Thhigh is a lower threshold of SRCC,

DSk ← DSk\{Fd}

else if min[≡F+1
d

] 6≈ min[≡Fd
] and min[≡Fd

] <

Thhigh, where |u+| = k − 1 and min[≡F+1
d

] −
min[≡Fd

] > ∆Th, where ∆Th is a lower threshold
of SRCC increment,

DSk+1 ← DSk+1 ∪ {F+1
d }

6) If DSk+1 = ∅, exit this procedure with return value∪
k DSk. Otherwise jump to the first step with k ←

k + 1.
To validate the algorithm, we show that the algorithm tests

the given system using a test suite that satisfies all the condi-
tions in Section IV-A. For this purpose, we show that each Tk

satisfies the conditions in Section IV-A. Obviously, it satisfies
condition 1 and condition 2-(b) since it contains the complete
test suite F ∗

d and {f}∗ for each f ∈ F\{Fd}. In addition, since
it contains 2-wise test suite R over F\{Fd ∪ {f}}, which is
combined with the complete test suite F ∗

d , condition 2-(a) is
also satisfied.

Then we explain that the algorithm finds sets of dominant
factors assuming Property 1, which is the fault model. Due to
Property 1, any set Fd of k factors can be found if all the sets
of k−1 factors have been found and if we examine the sets of
k factors which include these k−1 dominant factors. We note
that we would like to check at step 5 of k-th iterations whether
the set of k factors has similar performance characteristics or
not. This is necessary since we need to determine whether we
should continue to examine larger sets or not. For this purpose,
we let R be a 2-wise test suite so that Tk has the sufficient
test cases to examine the sets of k + 1 factors.

V. CASE STUDY

A. FTP over AODV and IEEE 802.11

At first, in order to show how our method works, we
have applied our method to file transfer over MANETs.
As performance factors, we have considered several internal
parameters of AODV, TCP and IEEE802.11 MAC. We have
also considered the choice of node density and region size
as the performance factors. These factors accompanied by
their levels are summarized in Table VII. As we can see, we
have dealt with 29 factors (|F | = 29). In the experiments,
we located two nodes in near the corners of the field and
have measured jitters at the receiver with given parameters by
QualNet [17].

We started the algorithm with k = 1 and DS1 =
{{f} | ∀f ∈ F}. 3,500 test cases were generated as T1 and
these jitters are measured by varying the levels of a single
factor. For each Fd = {f}, we have calculated SRCCs of
performance sequences where the assignments of levels to f
are the same. From the results, SRCCs were high where Fd

is {TCP}, {MSS}, {SEND-BUFFER} or {MAP}. Thus, DS1

became {{TCP}, {MSS}, {SEND-BUFFER}, {MAP}} after

TABLE VII
PERFORMANCE FACTORS AND THEIR LEVELS (AODV PROTOCOL)

MAC Layer (IEEE 802.11 DCF with RTS/CTS)
ID Factor Level
1 LONG-PACKET-TRANSMIT-LIMIT 1, 4 , 7, 13
2 RTS-THRESHOLD 0, 730. 1460

Routing (AODV)
ID Factor Level
3 NET-DIAMETER 10, 35, 50
4 NODE-TRAVERSAL-TIME(ms) 10, 40, 160
5 ACTIVE-ROUTE-TIMEOUT(s) 1, 3, 10
6 MY-ROUTE-TIMEOUT(s) 1, 6, 10
7 HELLO-INTERVAL(s) 1, 3, 10
8 ALLOWED-HELLO-LOSS 1, 2, 4
9 RREQ-RETRIES 1, 2, 4
10 ROUTE-DELETION-CONSTANT 1, 5, 10
11 PROCESS-HELLO NO, YES
12 LOCAL-REPAIR NO, YES
13 SEARCH-BETTER-ROUTE NO, YES
14 BUFFER-MAX-PACKET 50, 100, 200
15 BUFFER-MAX-BYTE 0, 1000, 100000
16 OPEN-BI- YES, NO

DIRECTIONAL-CONNECTION
17 TTL-START 1, 5, 10
18 TTL-INCREMENT 2, 4, 8
19 TTL-THRESHOLD 5, 15, 25

Transport (TCP)
ID Factor Level
20 TCP TAHOE, RENO, LITE,

SACK, NEWRENO
21 DELAY-ACKS YES, NO
22 DELAY-SHORT-PACKETS-ACKS NO, YES
23 USE-NAGLE-ALGORITHM YES, NO
24 USE-KEEPALIVE-PROBES YES, NO
25 USE-PUSH YES, NO
26 MSS 256, 512, 1024, 1460
27 SEND-BUFFER 1024, 4096, 16384, 65535

Environment
ID Factor Level
28 NODE DENSITY 4, 8, 16

(per 100m × 100m)
29 MAP (m × m) 200 × 200,

400 × 400,
600 × 600

the first test. In addition, we have found that SRCCs of F+1
d =

{{TCP}, {SEND-BUFFER}} were higher than these SRCCs
of Fd={TCP} or Fd={SEND-BUFFER}. This means that {
TCP, SEND-BUFFER } might be a set of dominant factors and
should be tested in the next step. Therefore, we let k = 2 and
DS2 ={{TCP, SEND-BUFFER}}, and went into the second
iteration.

The second iteration started with DS2 ={{TCP, SEND-
BUFFER}}. We have examined if Fd ={TCP, SEND-
BUFFER} was a set of dominant factors or not. For this
purpose, we have generated test suite T2 where T2\T1 had
only 2,060 test cases, and calculated SRCC for each pair of
performance sequences ~If (t) and ~If (t′) where t and t′ are in
the {f}-reduction of T2 and t≡Fd

t′ for each f . Since they had
similar SRCCs, we concluded that {TCP, SEND-BUFFER}
was the maximum set of dominant factors which includes
{TCP, SEND-BUFFER}. Thus we obtained DS3 = ∅, the al-
gorithm terminated at the end of the second iteration. Through
this case study, {TCP, SEND-BUFFER}, {MAP} and {MSS}

TABLE VIII
PERFORMANCE FACTORS AND THEIR LEVELS (LOCATION-AIDED

ROUTING PROTOCOL)

MAC Layer
ID Factor Level
1 CommunicationRange (m) 100, 125, 150, 200, 250

Routing (Location-Aided Routing)
ID Factor Level
2 ExtraSize (of Request Zone) (m) 0, 10, 25, 50, 100, 150

IP
ID Factor Level
3 QueueLength 25, 50, 100
4 FragmentSize 512, 1024

Application
ID Factor Level
5 PacketLength 128, 256, 512, 1024
6 PacketInterval (ms) 1, 5, 10, 25, 50, 100

Environment
ID Factor Level
7 NodeDensity 1, 2.5, 5.0, 7.5, 15.0

(per 100m × 100m)
8 VoidSize (m) 0, 50, 100, 150, 200, 250, 300

Request Zone

Extra Size

Void Size

Simulation Area

Wireless Communication Range

Source Node

Destination Node

Void Area

Fig. 4. Simulation Environment

are the sets of dominant factors that affect the packet jitters
between two nodes on MANETs.

B. Location-Aided Routing Protocol

We have also applied our method to test the Location-
Aided Routing protocol [9]. As shown in Fig. 4, in the
square region of 900m × 900m, we put a source node (src),
a destination node (dst) and many other relay nodes. We
artificially generated a square region without nodes called a
void area, and its side length is denoted by VoidSize. If src
would like to deliver data to dst, src transmits 100 packets
of a certain size denoted by PacketLength, at regular time
intervals denoted by PacketInterval. In this case study, the
nodes transmitted their packets on the routes constructed by
the LAR scheme 1. We have fixed the location of all nodes. In

order to vary the number of relay nodes, we have changed the
size of the expected zone denoted by ExtraSize, which is the
additional length of the standard zone size. Varying the levels
of the above and other factors summarized as Table VIII, we
have measured the average delay from src to dst using the
Qualnet [17].

At the first iteration with k = 1, SRCCs of QueueLength
and FragmentSize were 0.991 and 0.981, respectively. In
addition, SRCCs of any pair of QueueLength and the other
factor are almost same as that of QueueLength. Similarly,
SRCCs of any pair of FragmentSize and the other factor are
almost same as that of FragmentSize too. This means that
these factors have less effects on the delay. QueueLength is
the length of the packet queues of the nodes. If QueueLength is
smaller, some packets might be dropped if a relay node cannot
keep packets in its queue. However, no packet was dropped
at the relay nodes through the simulations and QueueLength
did not affect the delay in this case study. Similarly, packet
fragmentation was not observed since the sizes of most packets
were smaller than FragmentSize, which is the maximum size
of packets in the network. For the other factors, their SRCCs
were high but below 0.9, and the algorithm brought them to
the next step with k = 2.

At the second iteration with k = 2, SRCC of {PacketSize,
PacketInterval} was 0.983, which means a strong relationship.
This is natural since forwarding delay at each relay node
depends on the total amount of packets, which is determined
by PacketSize and PacketInterval. Since SRCC of this combi-
nation was almost 1, we stopped investigating further combi-
nations and determined that {PacketSize, PacketInterval} was
a set of dominant factors. Meanwhile, the algorithm brought
the other factor combinations to the next step with k = 3.

At the third iteration with k = 3, SRCC of
{CommunicationRange, NodeDensity, VoidSize} was 0.913,
that of {ExtraSize, NodeDensity, VoidSize} was 0.963
and that of {CommunicationRange, ExtraSize, NodeDen-
sity} was 0.936. For their superset {CommunicationRange,
ExtraSize, NodeDensity, VoidSize}, its SRCC was almost
1.0. Therefore, the algorithm stopped its investigation and
{CommunicationRange, ExtraSize, NodeDensity, VoidSize}
was regarded as another set of dominant factors.

VI. CONCLUSION

In this paper, we have proposed a comprehensive and
systematic test strategy for network protocols that are operated
in diverse environment. Our goal is to find out dominant
factors with less test cases, since (i) IUT may be a wireless
network system that is composed of many nodes, which
therefore includes many possible patterns for node deployment
and their mobility, heterogeneity of hardware profiles, choices
of protocols and their optional parameter settings, and (ii)
wireless network simulations or experiments take long time
or need much effort. For this objective, we provide a compre-
hensive test strategy with multiple factors and multiple levels
for network protocols. Taking into account a reasonable fault

model, we try to reduce the total number of test cases. Mean-
while, the focus of existing papers is to reveal or prove the
particular performance characteristics of particular networks.
Additionally, we formally define the dominant factors and their
interactions, and performance characteristics using the rank
correlation coefficient to provide a systematic test strategy.
The advantages of our method are shown by several realistic
case studies.

Our ongoing work includes the development of GUI for
our toolset to improve the usability and to attract the wide
variety of simulator users. Also, we are going to test other
systems like wireless sensor networks. They have their specific
performance factors regarding hardware settings like battery
capacity, memory capacity, wireless range and so on, and the
corresponding performance metrics may be different.

REFERENCES

[1] S. Kurkowski, T. Camp, and M. Colagrosso, “MANET simulation
studies: the incredibles,” ACM SIGMOBILE Mobile Computing and
Communications Review, vol. 9, no. 4, pp. 50–61, 2005.

[2] V. Rodoplu and A. Aminzadeh Gohari, “Challenges: automated design
of networking protocols,” in Proc. of the 14th ACM Int. Conf. on Mobile
computing and networking (Mobicom2008), 2008, pp. 271–278.

[3] D. C. Montgomery, Design and Analysis of Experiments, 7th ed. Wiley,
2008.

[4] C. Barrett, M. Drozda, A. Marathe, and M. Marathe, “Characterizing the
interaction between routing and MAC protocols in ad-hoc networks,” in
Proc. of ACM MobiHoc, 2002.

[5] K. Vadde and V. Syrotiuk, “Factor interaction on service delivery in
mobile ad hoc networks,” IEEE Journal on Selected Areas in Commu-
nications, vol. 22, no. 7, pp. 1335–1346, Sept. 2004.

[6] S. Kurkowski, W. Navidi, and T. Camp, “Discovering variables that
affect MANET protocol performance,” in Proc. of GLOBECOM ’07,
2007, pp. 1237–1242.

[7] M. W. Totaro and D. D. Perkins, “Using statistical design of experiments
for analyzing mobile ad hoc networks,” in Proc. of 8th ACM Int. Symp.
on Modeling, Analysis and Simulation of Wireless and Mobile Systems
(MSWiM2005), 2005, pp. 159–168.

[8] P. Johansson, T. Larsson, N. Hedman, B. Mielczarek, and M. Degermark,
“Scenario-based performance analysis of routing protocols for mobile
ad-hoc networks,” in Proc. ACM MobiCom, 1999, pp. 195–206.

[9] Y. Ko and N. H. Vaidya, “Location-aided routing (LAR) in mobile ad
hoc networks,” Wireless Networks, vol. 6, no. 4, pp. 307–321, 2000.

[10] A. Goulart and W. Zhan, “A design of experiment (DOE) analysis of
the performance of uplink real-time traffic over a 3G network,” in Proc.
of IEEE Int. Conf. on Wireless and Mobile Computing, Networking and
Communication (WiMob2008), 2008, pp. 466–471.

[11] J. Liu and S. Singh, “ATCP: TCP for mobile ad hoc networks,” IEEE
Journal on Selected Areas in Communications, vol. 19, no. 7, pp. 1300–
1315, 2001.

[12] S. Xu and T. Saadawi, “Revealing the problems with 802.11 medium ac-
cess control protocol in multi-hop wireless ad hoc networks,” Computer
Networks, vol. 38, no. 4, pp. 531–548, 2002.

[13] R. Kuhn, D. R. Wallace, and A. M. G. Jr., “Software fault interactions
and implications for software testing,” IEEE Transactions on Software
Engineering, vol. 30, no. 6, pp. 418–421, 2004.

[14] R. Mandl, “Orthogonal Latin squares: an application of experiment
design to compiler testing,” Communications of the ACM, vol. 28, no. 10,
pp. 1054–1058, 1985.

[15] A. W. Williams and R. L. Probert, “A practical strategy for testing
pair-wise coverage of network interfaces,” in Proc. 7th International
Symposium on Software Reliability Engineering (ISSRE ’96), 1996, pp.
246–254.

[16] J. Zar, “Significance testing of the spearman rank correlation coefficient,”
Journal of the American Statistical Association, vol. 67, no. 339, pp.
578–580, 1972.

[17] “Qualnet,” http://www.scalable-networks.com/.

