
Data-Centric Programming Environment for
Cooperative Applications in WSN

Shunsuke Mori∗‡, Takaaki Umedu∗ †,
Akihito Hiromori∗ †, Hirozumi Yamaguchi∗ † and Teruo Higashino∗ ‡
∗Graduate School of Information Science and Technology, Osaka University

†Japan Science Technology and Agency, CREST
‡Research Fellow of the Japan Society for the Promotion of Science

Abstract—

Due to recent evolution of MEMS technology, wireless
sensor nodes will be computing nodes having more storage
space and processing power, and wireless sensor networks
(WSNs) will be more capable of processing complex, cooper-
ative tasks just in time, without relying on cloud servers which
may cause delay and consume WSN bandwidth. However,
low level implementation of cooperative applications onto
individual sensor nodes needs a lot of human efforts, and
has a considerable gap with high-level requirement given by
application developers. To fill the gap, we propose a support
environment for WSN applications development. We design
a language to describe high-level specification of cooperative
applications on WSN and provide an algorithm that translates
the given high-level specification into program codes of sensor
nodes. We have shown some example descriptions of high-
level specifications and have evaluated the quality of generated
programs through several experiments.

I. INTRODUCTION

Sensing real-world phenomena, activities of people and
environments will be more significant for next generation afflu-
ent and ubiquitous life and society. Wireless Sensor Network
(WSN) is considered as a key platform for such a purpose.
However, wireless sensor nodes should be more intelligent
and cooperative to reduce traffic volume and delay to scale
as cyber-physical computation becomes more essential and
amount of sensor readings accordingly becomes larger. On the
other hand, each node should act to accomplish collaborative
behavior in fully decentralized, heterogeneous environment
for data collection and delivery, where sensor readings are
processed and routed among sensor nodes to enable local and
collaborative event processing. However, the implementation
of such collaboration requires the designers to make enormous
effort since writing codes of collaborative sensor nodes in
a node-centric way, while keeping the global, data-centric
behavior in mind, is extremely a hard task.

In this paper, we propose a methodology to support design
and development of collaborative WSN applications. The ap-
proach provides a language to specify the high-level behavior
of applications without referring to the real deployment of
sensor nodes, and an algorithm to automatically translate
the given application specification into a platform-dependent
program code of each sensor node. We provide a set of event
sensing and communication primitives to achieve the given
specification in WSN.

The application behavior may include time, location and
network-based constraints (conditions) on event occurrences
and their processing, and the description is independent of the
physical placement of sensor nodes. We provide a concept
that hides the details of wireless sensor network configuration,
communication and processing inside the network but all the
event occurrences are visible to the virtual node. In this
architecture, the specification is given as a program on this
node specifying pre- and post-conditions of events which are
carried out by collaborative nodes in WSN. The translation
algorithm automates design and implementation of complex
cooperation protocols from this developer-friendly form of
behavior specifications.

II. RELATED WORK

Several approaches for WSN systems have been presented
so far that support entire process of design and development
[1], [2], [3]. Woehrle et al. [1] have proposed a procedure for
systematic and strategic testing of target applications to verify
robustness and reliability of the applications. Liu et.al [2] have
proposed a method to break a given single program down into
several pieces that are executed by multiple nodes in ad-hoc
networks. MacroLab [3] can also derive distributed codes from
a given single program, and the developers can concentrate on
designing policies to collect sensor readings and manipulate
them. However, the above approaches do not provide the
concept of design support for cooperative event processing
with time-, location- or network-dependent conditions.

In this context, the most relevant approache with ours is
Ref. [4]. It proposes a set based programming approach where
requirement is given by a set of nodes, a set of sensor values
and so on. However, the most significant difference is Ref. [4]
basically adopts a node-centric view of programming, while
we allow a node-independent approach where a specification
can be fully-independent of nodes and networks including
neighbors and sink nodes (our scheme allows higher abstrac-
tion in other words). Cooperation among nodes to implement
such a specification is more complex and challenging, e.g.
cluster heads should appropriately be chosen to collect and
process sensor data if necessary, networks should dynamically
be built and sensor data should be routed efficiently in a
fully decentralized environment. We believe this is the first
approach to consider such highly-abstracted specifications and
provide cooperative, cost-effective solutions to achieve the
given requirement in WSN.

III. APPROACH OVERVIEW

A. Outline

Our method can derive a program code of each node on
WSNs for a given specification that describes actions to be
taken by a group of nodes and conditions to be examined
before the actions. Developers can easily describe applications
by specifying such conditions that should be checked by
cooperation of nodes.

We show a simple but essential example in Fig. 1 where a
group of nodes that satisfy the following conditions is defined
with predicates (the excerpt of them are shown in Table I)
as the first group to detect a fire; (1) all the nodes in the
group have detected temperatures higher than 40◦C, (2) they
are located in a circle with 100m diameter and (3) the average
temperature by 30 or more nodes in the group is higher than
50 ◦C. In addition, in order to alert the approach of fire,
the second group of nodes (EstimatedFireSpot) is defined.
EstimatedFireSpot has the similar center with the previous
group (DetectedFireSpot) but its radius is five times larger
than the maximum distance (diameter) between nodes in De-
tectedFireSpot group. The nodes in EstimatedFireSpot group
warn people to escape from the fire. In this way, conditions
on geometry, sensing data values and their manipulations can
be written in our specification.

However, such a specification is not easy to implement
since checking conditions and executing actions need cooper-
ative operations among nodes. For example, in order to check
a condition on sensing data, (i) a node group with a leader
node needs to be organized, (ii) the sensing data needs to be
collected onto the leader node, and (iii) it needs to be checked
if the condition is met or not. The action should be executed
if the condition is satisfied, or the group is dismissed.

Thus, our method can automatically derive the program
code of cooperative nodes. This hides the details of node
behavior, which are often complex, from the developers. There-
fore they can concentrate on application logic.� �

nodegroup DetectedFireSpot
condition:

TestEach(temperature, ">40")
&& InFloatCircle(100)
&& AverageSelect(temperature, 30)>50

action:
centroid = GetCentroid()
diameter = GetDiameter()

nodegroup EstimatedFireSpot
condition:

InGeoCircle(DetectedFireSpot.centroid,
5·DetectedFireSpot.diameter)

action:
ExecuteEach("ActivateAlert()");� �

Fig. 1. Specification of Fire Detection and Alert System

B. Code Derivation for WSN nodes

We discuss about the code derivation for WSN application
from given specifications. Fig. 2 shows the architecture of sens-
ing application which our method supports to development. It
is composed of sensor nodes which have positioning systems
(e.g. GPS), ad-hoc communication facilities (like Zigbee or

WAN

(e.g. 3G)

Sensor Nodes

Ad-hoc network

(e.g. ZigBee

Information about

single node conditions

Servers

Derived code has been

Installed to each sensor node.

Specification Code

Data for multi-node conditions

and execute action (e.g. upload)

Collected Data

Fig. 2. An Architecture of Sensing Application Developed by Proposed
Method

Bluetooth), and WAN devices (e.g. 3G). Thus, each node can
get its location information and communicate with neighbor
nodes and servers. Our method generates node programs and
developers install them to these sensor nodes.

For a given specification described by a set of nodes with
pre-conditions and post-actions, we classify the predicates
that constitute the condition into two categories, single-node
predicates and multi-node predicates. An example of single-
node predicate is TestEach that checks if variable on each
node satisfies a given condition (see TestEach(temperature,
“> 40”) in Fig. 1). Meanwhile, both InFloatCircle(100) and
AverageSelect(temperature, 30)>50 are multi-node predicates
since they cannot be examined by single nodes. For example,
InFloatCircle(100) needs distance calculation for every pair of
nodes, meaning that it can be checked only when a group of
nodes is given.

Considering this fact, we take the following strategy;
Firstly, we let each node periodically check single-node pred-
icates, and let the node be a potential constitute of the group
if it satisfies the conditions. If a node becomes a potential
constitute of the group, it establishes a link with neighboring
potential constitutes of the same group if any. This is done
by periodic neighbor discovery messages by each potential
constitute. These nodes finally form a tree with a leader node.
The choice of a leader node is simply done by determining
link direction (parent-child relation), and the root node can be
the leader node. Then the data values to check the multi-node
predicates are collected to the leader node, and the node checks
if all the multi-node predicates are satisfied or not. If true, those
nodes take actions as specified. Moreover, we allow to describe
conditions of groups that depend on some other groups. For
example, the second group (EstimatedFireSpot) in Fig. 1) is
such a group that refers to the “center” and “diameter” of
DetectedFireSpot as a part of its conditions. In this case,
the centroid of coordinates of nodes in DetectedFireSpot and
the diameter between nodes in it has been calculated by
the leader node of DetectedFireSpot to prepare for creation
of EstimatedFireSpot, and the information is broadcast to
potential constitutes of EstimatedFireSpot (in this case, all the
nodes). Our method derives codes according to this strategy.

Therefore, our method generates a programming code that
corresponds to each following step of the sequence according
to the given specification: (i) periodic sensing from sensors,
(ii) periodic evaluation of single-node predicates, (iii) tree
construction (potential group generation) and leader election,
(iv) data collection on the tree, (v) evaluation of multi-node
predicates and (vi) execution of actions, to check if conditions

TABLE I. PREDICATES FOR CONDITION PART (EXCERPT)

Type Predinate Description Examined by

General TestEach(v,
exp)

true iff variable v satisfies exp
at every node

Single

Location InGeoCircle(c,r) true iff all the nodes in the
group are within the circle cen-
tered at c with radius r

Single

Topology InFloatCircle(d) true iff all the nodes in the
group are within a circle with
diameter d

Multi

Topology Size(min,
max)

true iff the number of nodes in
the group is in [min, max]

Multi

TABLE II. FUNCTIONS FOR VALUES AND ACTIONS (EXCERPT)

Function Description

Average(v) Calculate the average of variables p among all the nodes in
the group

GetCentroid() Calculate the centroid of the coordinates of nodes in the group
GetDiameter() Calculate the maximum distance between nodes in the group
Sleep(t) sleep in t
UploadData(d,
c)

Let exactly one node in the group upload d through network
interface c

are satisfied or not, and to execute actions if satisfied. To derive
program codes, our method extracts predicates and parameters
from given specifications, chooses modules corresponding to
the extracted factors from existing code modules, and embeds
them into appropriate parts of a skeleton code, which is
composed of blocks for each of the steps.

IV. PERFORMANCE EVALUATION

We first demonstrate the benefit from our method in terms
of developers design effort-saving. This is done by comparison
of a given specification and the derived code in terms of
simplicity and readability. Then we measure the communica-
tion performance in order to show that automatic derivation
algorithm can derive a reasonable code.

A. Application Examples and Lines of Code Comparison

We consider two applications. The first one is simple and
similar with the fire detection and alert system in Figs.1, but it
can present applicability of our method to various applications.
It is a noise detection system (Fig.3) where environmental
noise is monitored by sensor nodes. If a sensor node detects
a certain noise, then the sensor nodes in the surroundings are
organized to calculate the average noise level and upload it.
Each node has a facility to upload data to base station, but
we would like to limit the number of nodes to upload data to
only one node in the group since duplication of reports means
waste of computation and communication resources. There are
two groups called Initiator and SensorGroup which represent
the first-detector of noise over 80db , and the group of sensor
nodes in its surrounding area, respectively. AREA_RADIUS is
a system parameter of the target area radius (constant).

Another example is a crowd estimation system. In a theme
park or huge exhibition space, we assume each visitor is
given a battery-operated dedicated information terminal. We
simply call it node. The objective of using such a device is
to exploit location-based guidance or navigation and to obtain
crowd information (e.g. how each attraction is crowded in a
theme park in real-time). Each node broadcasts its position
to neighboring nodes, and some nodes collect neighbor posi-
tions, generate people crowd information (i.e. perform crowd
estimation) and report them via 3G networks. The specification

� �
nodegroup Initiator

condition:
TestEach(noiseLevel, ">80db")
&& Size(1,1)

action:
centroid = GetCentroid()

nodegroup SensorGroup
condition:

InGeoCircle(Initiator.centroid, AREA_RADIUS)
action:

UploadData(Average(noiseLevel),BS);� �
Fig. 3. An Example Specification of Noise Detection Application� �

nodegroup CellCrowdEstimator
condition:

TestEach(neighborCounter, ">5")
&& (InGeoRectangle(c(0,0), c(1,1))

|| InGeoRectangle(c(1,0), c(1,2))
...
|| InGeoRectangle(c(m-1,n-1),c(m,n)))

&& Size(10, INFINITY);
action:

UploadData(EstimateDensity(neighborCounter),
3G_INTERFACE)� �

Fig. 4. An Example Specification of Crowd Estimation System
TABLE III. LINES OF CODES (LOCS) COMPARISON

Applications Specifications Derived Codes

Noise Detection 18 547
Crowd Estimation 17 443

is given in Fig. 4. CellCrowdEstimator is a group of nodes that
estimate the density of a crowded cell. We assume a region
is divided into square cells, and (i, j)-th cell is specified by
InGeoRectangle predicate with a pair of left–bottom coordinate
c(i, j) and right-up coordinate c(i+1, j+1). In the condition
of CellCrowdEstimator, a group of nodes where (i) each node
detected more than 5 neighbors, (ii) all the nodes exist in a
same cell, and (iii) the number of nodes in the group is at
least 10, is organized, and one node in the group is selected to
calculate the estimated density of the cell from the information
sent by the group member, and report it via 3G network.

The node programs are generated from these two applica-
tions’ specifications, and are assessed in comparison with the
original specifications in terms of the lines of codes (LoCs) and
abstraction levels. Fig.III shows LoCs of the specifications and
derived codes. The program derivation is executed by extract-
ing parameters and conditions from specifications, choosing
primitives for each collaboration process, and embedding them
into a skeleton code which contains only minimal processes for
sensing. Since the derived codes need a lot of implementation
level descriptions, they essentially need much more lines than
the specifications.

B. Performance Analysis of Systems based on Derived Codes

We have conducted simulation experiments to observe that
the automated program derivation performs well. We have
used the Scenargie network simulator [5] version 1.4 where
IEEE802.11g was used in the MAC and PHY layers of the ad-
hoc communications. By assuming small Tx power in wireless
sensor networks, the ad-hoc communication range r was about
40 m. We have targeted the noise detection application and the
simulation was performed for 60 seconds. The size of the area

0

20

40

60

80

100

120

140

0.0

0.2

0.4

0.6

0.8

1.0

1.2

25 50 75 100 125 150 175 200

Nodes

Radius of Target Area
Ideal Group Size Proposed (single event)

Proposed (two events) Sink based

Node Coverage Ratio
(a) 100 nodes

0

20

40

60

80

100

120

140

0.0

0.2

0.4

0.6

0.8

1.0

1.2

25 50 75 100 125 150 175 200

Nodes

Radius of Target Area

Node Coverage Ratio
(b) 144 nodes

Fig. 5. Node Coverage Ratio

was 250m × 250m and nodes are deployed uniformly (grid-
based deployment),

To present that the derived program codes can achieve
reasonable performance levels, we have evaluated Node cov-
erage ratio, Data collection delay, and Number of packets in
network under different radiuses of target area. Node coverage
ratio is the ratio of the number of actually-found nodes in
the simulation to the number of nodes to be found according
to the specification and node deployment. In other words, it
shows the “completeness” of data collection. Data collection
delay is the time duration from the first detection of over 80db
noise occurrence to the completion of data collection process.
Number of packets in network, which is the total number of
data and control packets in the network layer.

For reference purpose, we have also measured those met-
rics by a sink-initiated data collection and computation called
sink-based collection where a sink node broadcasts a data
request packet to all the nodes in the field by a simple flooding
mechanism, and each receiving node replies to this packet
by sending data back to the sink. In order to verify the
performance in various environments, we have prepared the
following four scenarios where the number of nodes and/or
the number of big noise events is different: 100 nodes (10 ×
10 nodes) with 1 event at 20 seconds and 2 events at both 20
and 23 seconds, and 144 nodes (12 × 12 nodes) with 1 event
and 2 events at the same timing.

Fig.5 (a) and Fig.5 (b) respectively show the node coverage
ratios with 100 and 144 nodes. In these graphs, the expected
number of nodes in the group is also shown as bars. We can
see that the ratios are very close to 1.0 in all the cases. We
note that sink-based collection achieves very low ratio (0.2 in
average). This is due to unreliable message delivery back to
sink nodes where these messages concentrated on a few nodes
around sink nodes and some of them have been lost.

Fig.6 shows the data collection delay. They are not affected
by the circle radius that determines the group size. As seen,
the sink-based protocol could achieve the shortest delay, but
this is mainly due to (very) low node coverage ratios (most
packets were not delivered to sink nodes). On the other hand,
we can observe that our algorithm could achieve reasonable
trade-off between the node coverage ratio and delay.

Finally, Fig. 7 shows the number of packets observed in the
network layer. The number of packets grows as the radius of
circles becomes larger, but the growing tread is linear in any
case. From this fact, we can say that our group-based local
data collection and processing works preventing the growth of

0

1

2

3

4

5

6

7

25 50 75 100 125 150 175 200

Delay(Sec)

Radius of Target Area

Proposed (single event, 100 nodes)

Proposed (two events, 100 nodes)

Proposed (single event, 144 nodes)

Proposed (two events, 144 nodes)

Sink based (100 nodes)

Sink based (144 nodes)

Fig. 6. Data Collection Delay

0

200

400

600

800

1000

1200

1400

1600

1800

25 50 75 100 125 150 175 200

Packets

Radius of target region (m)

Proposed (1event, 100nodes)

Proposed (2event, 100nodes)

Sink based (100 nodes)

Proposed (1event, 144nodes)

Proposed (2event, 144nodes)

Sink based (144 nodes)

Fig. 7. The number of L2 packets

traffics to data collection toward a single point, which is often
located far from the event occurrence place.

V. CONCLUSION

In this paper, we have proposed a support methodology for
cooperative wireless sensor network application development.
We have designed a language to describe high-level specifica-
tion of such applications and have provided an algorithm to
translate a given high-level specification into program codes
for wireless sensor nodes. Our contribution is that we focus
on cooperative applications in WSNs and design a method-
ology to implement given applications in a fully-distributed
way, assuming computing and communication capabilities of
intelligent sensor nodes.

Our ongoing work includes to apply the proposed method
to participatory sensing systems on smartphones. In those
platforms, we need to consider mobility, neighbor discovery
and security issues keeping the architecture limitation in mind.

REFERENCES

[1] M. Woehrle, C. Plessl, J. Beutel, and L. Thiele, “Increasing the reliability
of wireless sensor networks with a distributed testing framework,” in
Proceedings of the 4th workshop on Embedded networked sensors, ser.
EmNets ’07. New York, NY, USA: ACM, 2007, pp. 93–97.

[2] H. Liu, T. Roeder, K. Walsh, R. Barr, and E. G. Sirer, “Design and
implementation of a single system image operating system for ad hoc
networks,” in Proceedings of the 3rd international conference on Mobile
systems, applications, and services, ser. MobiSys ’05. New York, NY,
USA: ACM, 2005, pp. 149–162.

[3] T. W. Hnat, T. I. Sookoor, P. Hooimeijer, W. Weimer, and K. White-
house, “Macrolab: a vector-based macroprogramming framework for
cyber-physical systems,” in Proceedings of the 6th ACM conference on
Embedded network sensor systems, ser. SenSys ’08. New York, NY,
USA: ACM, 2008, pp. 225–238.

[4] M. Hossain, A. Alim Al Islam, M. Kulkarni, and V. Raghunathan, “µsetl:
A set based programming abstraction for wireless sensor networks,” in
Information Processing in Sensor Networks (IPSN), 2011 10th Interna-
tional Conference on, april 2011, pp. 354 –365.

[5] Space-Time Engineering, “Scenargie base simulator,”
http://www.spacetime-eng.com/.

