
Design and Implementation of Overlay Multicast Protocol
for Multimedia Streaming

Thilmee M. Baduge Akihito Hiromori Hirozumi Yamaguchi Teruo Higashino
Graduate School of Information Science and Technology

Osaka University
1-5 Yamadaoka, Suita, Osaka 565-0871, JAPAN

�thilmee, hiromori, h-yamagu, higashino�@ist.osaka-u.ac.jp

Abstract

In this paper, we propose a new protocol called Shared Tree
Streaming (or STS in short) protocol that is designed for inter-
active multimedia streaming applications. STS is a decentral-
ized protocol that constructs a shared tree called s-DBMDT
(sender-dependent Degree-Bounded Minimum Diameter Tree)
as an overlay network that involves all the participants of the
application. For a given set of nodes where some of them are
senders, s-DBMDT is a spanning tree where the maximum de-
lay on the tree from those senders is minimized and the de-
gree constraint on each node is held. We believe that this is
the first approach that defines s-DBMDT construction prob-
lem and presents a distributed protocol for the purpose. Our
performance evaluation is based on experiments in both sim-
ulated networks and real networks that strongly shows the ef-
ficiency and usefulness of STS protocol.

1 Introduction

Recent innovation of the Internet has brought us several in-
teractive group communication models. Especially recent ap-
plications may require multimedia-based group communica-
tion methods such as whiteboard, audio and streaming video.
It is a common consensus that we need multicast solutions for
group communication and IP multicast is not suitable for such
a purpose because it is designed for large-scale content distri-
bution. Instead, overlay multicast solutions have had a lot of
attentions where application nodes (end systems, referred to
as simply nodes in this paper) are connected by unicast chan-
nels and consequently form tree-like virtual networks (overlay
networks) among them.

A lot of research efforts have been dedicated so far to de-
ploy overlay multicast. They are classified into the follow-
ing three categories based on their policies to generate overlay
topologies, (i) mesh-first approaches like [1, 2], (ii) tree-first
approaches like [3, 4, 5, 6, 7] and (iii) other approaches like

[8]. In Ref. [7], we have taken a tree-based approach and have
presented a protocol called MODE (Minimum-delay Overlay
tree construction by DEcentralized operation). MODE aims
at minimizing maximum delay (referred to as diameter) be-
tween any pair of nodes under the degree-constraints given by
the nodes, assuming interactive applications where every node
can be a potential sender. Some techniques for constructing
Degree-Bounded Minimum Delay (or Diameter) Trees (DB-
MDTs) have been proposed [4, 5, 7], considering the max-
imum delay of overlay trees and the bandwidth constraints
around nodes. Unfortunately none of those methods has con-
sidered the following several important features of interactive
multimedia applications such as video conferencing.

First, such an application may have several sources. These
sources are subject to change, but are not changed so fre-
quently. For example, in video-conferencing, pictures of some
primary persons should be continuously delivered to the other
audience. In such an application, we would like to effi-
ciently build a tree where the maximum delay from the current
senders is minimized satisfying the degree bounds of nodes.
Hereafter, for a given set of senders, such a tree is called
sender-dependent DBMDT and denoted as s-DBMDT. Fig. 1
shows an example that explains the difference between DB-
MDT and s-DBMDT. For a given complete graph that repre-
sents an overlay network in Fig. 1(a), DBMDT is a spanning
tree which involves all the nodes of the graph and has a min-
imum diameter, as shown in Fig. 1(b). In this case, the di-
ameter path is �-�-�-� (or �-�-�-�) of delay 5. Here, let us
suppose that currently only nodes � and �, which are shown
by the meshed circles in the figures are senders. In this case,
considering the fact that only these nodes send data and others
are receivers, s-DBMDT in Fig. 1(c) achieves smaller maxi-
mum delay 4 (�-�-�) from those senders, while 5 (�-�-�-� or
�-�-�-�) in DBMDT of Fig. 1(b).

Secondly, considering practical aspects of interactive mul-
timedia applications, we need to identify incapable hosts and
prevent them from staying in the center of s-DBMDT, since

a

b c

d e

1 2
1 2

2 2
22

3

2

1 2
1 2

2 2
2

3

2

e

degree bound=3 (all nodes)

2

1 2
1

2 2
2

3

2

2

2
b

a

b c

d e

c

d

a

(a) (b) (c)

(a) An Overlay Network (b) DBMDT (dia.=5,s-dia.=5)
(c) s-DBMDT (dia.=5,s-dia.=4)

Figure 1. DBMDT and s-DBMDT on Overlay Net-
works

those hosts may delay or drop packets due to limitation of
network bandwidth or processing power to forward packets,
or instability of hosts. Similarly, we should provide a reason-
able way to allow each host to determine an appropriate degree
bound, since the capability overflow of such a host may also
cause packet delay or dropping at the host.

In this paper, we propose a new protocol called Shared
Tree Streaming (or STS in short) protocol that constructs s-
DBMDT adaptively in a decentralized heuristic manner. We
also design and implement a Java middleware based on STS
protocol. Compared with the existing literatures, our contribu-
tion can be summarized in to the following two points. First,
we define a new problem that is well-suited to multimedia in-
teractive applications and design a new decentralized proto-
col for the problem. Secondly, we have designed and imple-
mented an adaptation mechanism that is needed for multime-
dia streaming on overlay shared trees. Our performance evalu-
ation is based on experiments in both simulated networks and
real networks that strongly shows the efficiency and usefulness
of our protocol.

2 Shared Tree Streaming (STS) Protocol

First, we give the definition of a Degree-Bounded Mini-
mum Diameter Tree (DBMDT)[7]. Let � � ����� denote
a given undirected complete graph where � denotes a set of
nodes and � denotes a set of potential overlay links which are
unicast connections between nodes. Also let �����	� denote
a degree bound of each node 	 � � (the maximum number
of overlay links attached to), and let
��� �� denote the delay
of each overlay link ��� �� � �. DBMDT is a spanning tree
 of � where the diameter of (the maximum delay on)
is minimum and the degree of each node 	 � � (denoted as
��	�) does not exceed �����	�.

Based on the above, we define a sender-dependent DBMDT
(s-DBMDT) introduced in this paper as follows. For a given
� � ����� and a given set � � � of senders, s-DBMDT is
a spanning tree of � where the maximum delay from the
senders in � is minimum and ��	� � �����	� where 	 �
� . The maximum delay from the senders is called sender-
dependent diameter and denoted by s-diameter.

1
a

s-diameter=2

1
b

c

1

s-diameter=3

1

d 11

3

3

d

ec

b

a

2
2

2 1
1

s-diameter=3

1

1 d

ec

b

a

2

degree bound of all the nodes=3

(a) (b) (c)

Figure 2. Join Procedure

The DBMDT construction problem has been proved to be
NP-hard [4]. The DBMDT construction problem is a special
case of our s-DBMDT construction problem where � � � .
Therefore, we need an efficient heuristic algorithm for the
problem.

2.1 Minimizing Maximum Delay from Senders

The proposing protocol, Shared Tree Streaming (STS) pro-
tocol, consists of two main procedures, join and repair. The
join procedure makes a new joining node connect to a node
which positions the joining node “closest to the senders” of
the current tree in order to prevent the new node from making
the s-diameter longer. The repair procedure is activated when
a node on the current tree leaves (or suddenly disappears) and
it connects appropriate intermediate nodes in the isolated sub-
trees to make a new tree with a shorter s-diameter. To execute
the above procedures in decentralized manner, each node in
our STS protocol autonomously collects the information about
the current sender nodes and diameter paths of the sub-trees
that will appear by neighboring node’s leaving. This infor-
mation collection is executed periodically to keep up with the
status changes of the tree (e.g. location of sender nodes and
diameter paths of the sub-trees). This will be explained in
Section 3.3. In this subsection, we explain how the two proce-
dures keep the s-diameter as small as possible, satisfying the
given degree bounds of nodes.
[Join Procedure Outline]: For a new joining node �, the join
procedure never changes the current form of the tree, but lets
the new node � connect to such a node (say) where the max-
imum delay from the senders to the new joining node � (i.e.
a candidate for the s-diameter of the consequent tree) is min-
imum. Note that node 	 must be such a node that has at least
one residual degree.

Fig. 2 shows an example where senders are denoted by
meshed circles. We assume that the degree bounds of all the
nodes are 3. In Fig. 2(a), we have a tree involving three nodes
�, � and � where � and � are senders. Also the s-diameter of
the tree is 2. Let us assume that a node � wants to join the
tree, and the dotted lines in Fig. 2(a) represent the measured
delay between the new node � and the existing nodes on the
tree. Consequently, node � is connected to node � since the
maximum delay from senders � and � becomes 3 (Fig. 2(b))
and it is the minimum in all the possible connecting positions.

u

sa

sbsc

subT3

v1 v2

v3

sb

subT1

c3

c2

subT1 sc

subT2

subT2

subT3

sa

m1 n1
m2 n2

m3 n3

w

c1

(a) (b) �

path type

1. longest path from �� in ����� (i)
2. ��-��-��-�� (ii)
3. ��-��-��-��-�� (ii)
4. longest path from �� in ����� (i)
5. ��-��-��-�� (ii)
6. ��-��-��-�� (ii)
7. longest path from �� in ����� (i)
8. ��-��-��-�� (ii)
9. ��-��-��-�� (ii)

(c) Candidates for s-diameter path of �

Figure 3. Repair Procedure

And the subsequent joining nodes (i.e. node � in Fig. 2(c))
also follow the same method.

[Repair Procedure Outline]: Whenever a node’s disappear-
ance occurs, the disconnected sub-trees are repaired by the re-
pair procedure. At that time, we try to shorten the s-diameter
of the repaired tree, by connecting the core nodes of the iso-
lated (disconnected) sub-trees. Here, let � and � be the both
end nodes of the diameter path (not s-diameter path) of a tree
�. The core node of � is a node whose maximum delay from
the nodes � and � is minimum in all the nodes of �. This
means that the core node is located on the “center” of the di-
ameter path. Here, we will explain why such a procedure can
make the s-diameter of the repaired tree shorter. An exam-
ple is shown in Fig. 3 where the senders are ��, �� and ��
and represented by meshed circles. In tree of Fig. 3(a), let
us assume that its s-diameter path is ��-	�-�-	�-� and a new
node � leaves the tree. By the leave of node �, the tree is
partitioned into three sub-trees ����, ���� and ����, and
they are connected through their core nodes ��, �� and �� (de-
noted by squares) and reorganized into a new tree � as shown
in Fig. 3(b) (there are some possibilities to connect among the
core nodes and this figure shows one of them). In this case,
the s-diameter of � is either of (i) the maximum delay from
a sender to a node within the same sub-tree, or (ii) the maxi-
mum delay from a sender to a node on a different sub-tree. We
enumerate all the candidates for the new diameter path in Fig.
3(c) along with their classification of the above type (i) or (ii).
We note that �� and �� are both ends of the diameter path of
���� and without loss of generality we assume that delay of
path ��-�� on the tree, denoted by ��������, is always equal
to or larger than ����� ���.

Obviously, if a path of type (i) (either path 1, 4 or 7 in
Fig. 3(c)) becomes the s-diameter path of �, the s-diameter

is equal to or smaller than that of . Otherwise, one of the
paths of type (ii) becomes the s-diameter path of �. Here we
can say that for any sub-tree ����, the following inequality,
����� ��� � ����� ��� � ��������, always holds where � is
the delay of the path between two nodes on the tree1. The
above inequality suggests that for any path of type (ii), the
delay from a sender to the core node on the same sub-tree is
not larger than the half of the diameter of the sub-tree. Also
on another sub-tree, the delay from its core node to an end of
the diameter path on the sub-tree is the half of the diameter of
the sub-tree. Consequently, the diameter of � may be equal
to or less than the sum of halves of the diameters of the two
sub-trees plus the delay between the core nodes. Here, the
half of the diameter of a sub-tree of is always smaller than
the half of the diameter of the original tree . Therefore, this
may shorten the s-diameter compared with in many cases
even though it depends on the delay between the core nodes.
To make it easy to understand, let us compare our strategy
with the simple one where we simply connect the neighboring
nodes of � (i.e. 	�, 	� and 	�). This procedure makes the new
s-diameter almost equal to that of with a high possibility,
since the maximum delay paths from the neighboring nodes
	�, 	� and 	� remain as they are, and they may again be a part
of the s-diameter path of the repaired tree.

We note that the above description is valid for the case that
the leaving node � is on the s-diameter path of . For the case
that node � is not on the s-diameter path of , the s-diameter of
 � is not smaller than that of . This is because the s-diameter
path of is preserved in an isolated sub-tree as it is, and thus
it remains in �. However, we think that the s-diameter of �

is not changed from in most cases.
As a whole, we can expect the s-diameter to be smaller

when nodes leave.

3 Design of STS Protocol

3.1 Join Procedure Design

A new node which wants to join the current tree first sends
a query message to a well-known node on the tree to ask the
address of the center node of the tree. The center node of a tree
is a node whose maximum delay from the senders is the mini-
mum. Intuitively, the accepter-node that makes the maximum
delay from the senders to the new node minimum seems to
be located near the center node of the current tree. Therefore,
we start searching the accepter-node from the center node. To
do this, in our STS protocol, we assume that each node can
know the center node of the current tree (thus any node can be
a well-known node). We also assume that each node knows
the maximum delays from all the senders. The way of this
information collection will be explained later in Section 3.3.

1This is obvious since ����� ��� � �������� is the diameter (the maxi-
mum delay) of �����.

Tv,u

core(Tv,u)
(repair master)

Tv,w1

v

u

Tv,w2

w1 w2
core(Tv,w1)
(repair sub-master)

[2] (repair initiater) [2]

[3]

[3]

Tv,u

Tv,w1 Tv,w2

(repair sub-initiater) (repair sub-initiater)
[4] [4]

[1]

(a) phases (1)-(3) (b) phase (4)

Figure 4. Repair Procedure

Once the joining node receives the reply from the well-known
node, it sends a connection request message to the center node.
Then, the center node sends a connection permission message
to the joining node only if its residual degree is not zero. At
the same time, it broadcasts the connection request message
to its neighboring nodes of the tree. In response to the re-
ception of the connection request message, each neighboring
node acts in the same way as the center node. Therefore the
connection request message is delivered on the tree to all the
nodes. Here, to prevent the joining node from receiving a large
number of connection permission messages, a maximum hop
count from the center node can be assigned to the connection
request message.

The new joining node can know the maximum delay from
the senders to each responded accepter-node, by making the
connection permission message contain those information.
Then, by knowing the delay to each accepter-node (this can
be measured using ping for instance), the joining node can
choose the accepter-node that minimizes the maximum delay
from the senders to itself.

3.2 Repair Procedure Design

Hereafter, for a pair of two adjacent nodes 	 and � on the
tree , let 	
� denote the sub-tree rooted at node � and iso-
lated by node 	’s disappearance. Suppose that the sub-tree
information of 	
� contains the IDs and network addresses
of (i) �, (ii) �’s neighbors except 	 and (iii) the core node of
	
� (denoted as �����	
��). We assume that each node, say
�, has the sub-tree information of 	
� for every pair of 	 and
� where 	 is a neighboring node of � and � is a neighbor-
ing node of 	 including �. We also assume that for adjacent
two nodes, parent-child relationship on the tree is pre-defined.
Each node autonomously collects necessary sub-tree informa-
tion by the information collection procedure described in Sec-
tion 3.3.

Under the assumptions above, we present the design of the
repair procedure as follows. For simplicity of discussion, we
explain the repair procedure for a single node’s disappearance
without considering other nodes’ disappearances.

The procedure repairs the tree for node 	’s disappearance
in the following four phases (Fig. 4). In Fig. 4, we assume

that node � is the parent node of node 	.

(1) The parent node � of node 	 activates the repair proce-
dure and sends all the sub-tree information of 	
��

(��
is one of the child nodes of 	, � � � � ��	� � �) to the
core node �����	
�� of 	
�. This information passing
is done along the tree.

(2) �����	
�� sends its address to each �� directly.

(3) Then each �� sends the address of �����	
�� to its core
node �����	
��

� (i.e. sub-tree 	
��
’s core node). This

information passing is done along the tree.

(4) Now each �����	
��
� knows the address of �����	
��,

so it connects itself to �����	
��. If �����	
�� or
�����	
��

� has no residual degree, it delegates its role
to its closest node with some residual degree. After this
phase (4), the core nodes exchange their sub-tree infor-
mation with their neighboring nodes to prepare for future
node disappearance.

By this procedure, the core nodes or their neighboring nodes
get connected to each other. One may think that this procedure
contains redundant operations (for example, we can directly
send sub-tree information between the neighboring nodes of
	 and the core nodes in phases (1) and (3)), and that the sub-
tree information contains unused data such as the neighboring
nodes’ information of the root node. This redundancy is nec-
essary to prepare for another disappearance occurs during the
procedure, but due to limitation of space, we omit the dis-
cussion of validation in case of simultaneous occurrence of
multiple disappearances. Readers may refer to Ref. [7] to see
analogous idea for the validation.

3.3 Information Collection

In STS protocol, all the nodes periodically collect the infor-
mation required to execute join and repair procedures by mes-
sage exchange along the current tree. We assume that there
exists a node that never disappears, for example, the first mem-
ber node or a well-known node. Such a node is called the root
node 2. The root node starts the information collection in the
collection phase for every (regular) interval by broadcasting
synchronization messages on the current tree. Obviously, the
number of synchronization messages is � � � where � is the
number of nodes on the current tree. A non-leaf node enters
the collection phase if it has received a synchronization mes-
sage from its parent and has sent synchronization messages
to all its children. A leaf node does not send synchronization
messages. Instead, when it receives a synchronization mes-
sage, it enters the collection phase and replies a collection

2This is not an essential assumption. By giving a unique ID to each node,
a new root node can be found autonomously by using a distributed algorithm
for the leader election when the current root node has disappeared.

message to its parent. Each non-leaf node in the collection
phase acts as follows. Whenever it receives collection mes-
sages from all the neighboring nodes except one neighboring
node (say �), it sends a collection message to node �. Each
node � leaves the collection phase if node � has received a
collection message from every its neighboring node 	 and has
sent a collection message to 	. This means that in the collec-
tion phase, ������ collection messages are exchanged on the
tree. So, totally, the number of messages required for the col-
lection of the current status is only ������, that is, only three
messages are exchanged on each link of the tree.

Hereafter we will explain how the information required by
join and repair procedures are collected by collection mes-
sages. The information that each node � must hold are, (i)
The ID and address of the center node of the current tree , (ii)
The maximum delay from the senders to node � and (iii) The
sub-tree information of
� for every pair of � and � where �
is a neighboring node of � and � is a neighboring node of �
. Note that the sub-tree information of
� contains the IDs
and network addresses of �, �’s neighboring nodes and the
core node of
� (�����
��).

And the following auxiliary information are needed to cal-
culate the sub-tree information of �
. (i). �����
� : the
diameter of �
, (ii). ���
� : the maximum delay of �

from �, (iii). ���
� : the maximum delay path of �
 from
�. The delay of each link on the path is also included and (iv).
���� �
� : the path from a sender � in �
 to �. The delay
of each link on the path is also included.

We let each node (say) be responsible for calculating the
sub-tree information of �
	 for every its neighbor �. For this
purpose, we let the collection message sent from 	 to � have
the following information. (i). �����
	�, ���
	�, ���
	�
and ���� �
	� (for each sender � in �
), (ii). the sub-tree
information of �
	 and (iii). the sub-tree information of 	
�
for each � (except �) of the neighboring node of 	. Now we
show that node 	 can calculate the above information if it re-
ceives the collection messages from all the neighboring nodes
except � (let � denote the set of neighboring nodes of 	 ex-
cept �). First, the parameters �����
	�, ���
	�, ���
	�
and ���� �
	� (for each sender � in �
) can be defined as
follows.

�����
	� � ���
�
�
��

�����	
��� ��	
�� 	

�	� �� 	 ��	
� 	
�	� ���

���
	� � ���
���

���	
�� 	
�	� ���

���
	� �
	����	
��
� ��� �� where ��

maximizes ���
	��

���� �
	� �
	������ 	
�� ��� � � where

���� 	
�� is not empty�

Note that
��� �� is the link delay on the tree. The equation

for �����
	� comes from the definition of the diameter. The
diameter of �
	 is the maximum value of (i) the diameters of
its sub-trees and (ii) the sum of the two longest depths from
node 	. The others are straightforward.

Secondly, regarding the sub-tree information of �
	, the
IDs and network addresses of 	 and 	’s neighbors are known
by 	. Therefore, ������
	� can be defined as follows.

������
	� �

��������
�������

�����	
�� �if �����
	� � ����	
��
where � � � �

center of ��	���	
����
	����	
�
�if �����
	� � ��	
�� 	
�	� ��	
��	
� 	
�	� ��where �� � �� �

Here “rev” is the reverse function of a given path.
Thirdly, the sub-tree information of 	
� is included in the

collection message from �.
From the above, we have proved that each node 	 can cal-

culate the content of the collection message to be sent to node
�. Assuming those information, we show that any node, say �,
can calculate the information that node �must hold, listed pre-
viously in this section. The center node and maximum delay
from the senders can be calculated by all the ���� ��
��� in-
cluded in the received collection messages. Also the sub-tree
information of
� is directly included in the collection mes-
sage from � to �. Consequently, we have proved that every
node can obtain the required information after the collection
phase.

4 Implementation of STS Protocol as Java
Middleware

We have implemented our protocol as a Java based mid-
dleware called STS/J. Due to limitation of space, we only
present our degree bound adaptation mechanism implemented
in STS/J, which is an important functionality for media
streaming on overlay networks.

Theoretically, we have shown importance of s-DBMDT for
interactive multimedia applications in previous sections. Here,
we focus on practical aspects of multimedia streaming on a
tree. Practically, it is difficult to determine an appropriate de-
gree for each node. It is theoretically simple, since usually an
end host has only one network interface, and all the overlay
links attached to the host uses this interfaces. Therefore, the
upper bound of the degree bound �����	� of node 	 is deter-
mined by �����	� �

��
���

��
where � is the bandwidth of

the network interface and �� is the bitrate transmitted from
a sender �. However, the actual bandwidth of network inter-
face, especially wireless network interface, changes from time
to time. Therefore, the degree bound should be adapted ac-
cording to the network status.

Here, we adopt the following scheme for each node 	. We
denote the set of the neighboring nodes of 	 by � and the

u

v

w1

w2

congestion

u

v

w1

w2 u

v

w1

w2

congestion

(a) (b) (c)

(a) Physical network and overlay tree.
(b) Congestion occurs on a remote link of node 	.
(c) Congestion occurs on the local link of node 	.

Figure 5. Adaptation Mechanism

neighboring node which sends a stream to 	 by �. Thus node
	 relays the stream to the nodes in � � ��� (Fig. 5(a)). Our
implementation uses RTP and RTCP, and if a node detects loss
or jitter of packets, it sends receiver reports to its upstream. In
Fig. 5, streams are represented by thick arrows, while RTCP
reports are represented by dotted arrows. In the figure, the un-
derlying network is shown where small circles represent phys-
ical routers and big ones represent end hosts.

� If node 	 receives an RTCP receiver report from only one
node (or some nodes) � � � � ���, node 	 determines
that network congestion happens not on the local link (i.e.
network interface) but on a remote link on the unicast
path between 	 and � (Fig. 5(b)). In this case, node 	
sends compulsory leave message to node � to let it leave
and rejoin the tree.

� If node 	 receives an RTCP receiver report from each
node in � � � � ��� and also node 	 sends an RTCP
receiver report to node �, node 	 determines that network
congestion happens on the local link (Fig. 5(c)). In this
case, node 	 ignores the compulsory leave message from
node �, and sends compulsory leave messages to some
nodes in � � � � ��� to let them leave and rejoin the
tree. This is done to dissolve the congestion on the lo-
cal link of node 	 by decreasing its current degree. After
that, node 	 sets its degree bound �����	� to the adjusted
degree to prevent itself from accepting other neighbors.

� If node 	 continues stable states for a while, it increments
its degree bound.

5 Experiments

5.1 Simulation Experiments

We have implemented our STS protocol on ns-2 to evalu-
ate the enhancement against our previous work MODE[7]. In
our experiments, networks with 400 physical nodes have been
generated and used as underlying networks. We have selected
200 nodes, including both wireless and wired nodes, as over-
lay participant nodes. In the simulation, we have set the initial
end-to-end delay (overlay link delay) to vary between 10ms
to 200ms for both wired and wireless nodes, while setting the

wireless nodes to change their end-to-end delay up to 300ms
during the simulation.

Considering practical situations, we have prepared the fol-
lowing scenario that simulates a real-time session in collab-
orative applications such as a video-based meeting or group-
ware. Note that we set the interval between collection phases
to 60 seconds. The initial degree bound was set to 5 for all
the nodes. The scenario is as follows. (i) The session period
is 300 seconds. (ii) Each of 200 nodes joins the session only
once and eventually leaves the session. (iii) Within the first 30
seconds, about 60 nodes join the session. (iv) From 30 seconds
to 270 seconds, additional joins are processed. Also some ex-
isting nodes leave the session. The collection phases starts at
30, 90, 150, 210 and 270 seconds successively. (v) After 270
seconds, no node joins and about 40 nodes leave the session.
[Diameter and Sender-Dependent Diameter]: We have
measured (a) the diameters and (b) sender-dependent diam-
eters (s-diameters) at every one second for STS and MODE.
According to the goals of those two protocols, we can expect
that STS could achieve smaller s-diameters, but a bit larger di-
ameters than MODE. Fig. 6 shows the results. We can figure
out that the s-diameter of STS is smaller (Fig. 6(b)). On the
other hand the diameter of STS remains larger than MODE
according to Fig. 6(a). Note that the diameter is not dominant
on the streaming as long as one of the sender nodes play the
role of streaming source.

The average diameters and s-diameters were 651, 364 suc-
cessively for STS and 585, 480 successively for MODE in mil-
liseconds. They were measured performing simulations for
10 different sessions, where each followed the above scenario.
According to those results, we can again say that STS can sup-
port multimedia applications better than MODE.
[Control Traffic]: The control traffic is shown in Fig.7. The
highest traffic amount has been generated around 30 seconds
(around the first collection phase) as the number of nodes has
reached to top. Even taking this peak value (350kbit) to-
gether with the number of nodes in the session at that time
(90 nodes approximately), the average traffic amount on a sin-
gle node can be calculated as 4kbit/sec. We can say this value
(4Kbps/node as maximum) is small enough for streaming ap-
plications which usually consume several hundreds of Kbps.
[Join/Repair Procedure Overhead]: The time required for
join and repair procedures explained in Section 3 was 930
and 790 milliseconds successively. According to these results,
the time required for restoration of isolated trees (repair time)
remains less than 1 second, which can be considered small
enough for multimedia streaming. The time required for the
join procedure (join time) here is larger than the repair time.
Here we have set the connection permission message time-
out (the time each joining node waits to receive connection
permission messages before it selects the best position to con-
nect) large enough (0.6[s]) to receive as more as connection
permission messages. So the join time holds a larger value

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900
diameter in DBMST

diameter in s-DBMST

 0 50 100 150 200 250 300

 0

 20

 40

 60

 80

 0
 4
 8

 12
 16 #of join nodes

of leave nodes

time[s]

of

 jo
in

s
&

 le
av

es
/s

ec

of

 o
ve

rl
ay

 n
od

es

di
am

et
er

 [
m

s]

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

s-diameter in s-DBMST
s-diameter in DBMST

 0 50 100 150 200 250 300

 0

 20

 40

 60

 80

 0
 4
 8

 12
 16 #of join nodes

of leave nodes

time[s]

of

 jo
in

s
&

 le
av

es
/s

ec

of

 o
ve

rl
ay

 n
od

es

di
am

te
r[

m
s]

(a) Diameter (b) Sender-Dependent Diameter (S-diameter)

Figure 6. Dynamics of (a) Diameters and (b) S-diameters

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250 300

 0

 20

 40

 60

 80#of nodes

 0
 4
 8

 12
 16 #of join nodes

of leave nodes

tr
af

fi
c[

K
bp

s]

of

 o
ve

rl
ay

 n
od

es

of

 jo
in

s
&

 le
av

es
/s

ec

time[s]

Figure 7. Control Traffic (Total kbits on tree per
each second)

(0.93[s]), but this value is considered reasonable enough as
time required for bootstrapping.

5.2 Experiments on Real Networks

We have used 8 machines placed in the same LAN
(100Base-TX) and run 4-6 processes on each machine to emu-
late 40 user nodes. Here, we made each process keep the pack-
ets for a certain time period before forwarding, if the forward-
ing target is located in the same machine where that process
runs. In this way, we could prevent the link-delay between the
nodes located in the same machine from being too small. The
scenario is as follows. All nodes join the tree before streaming
video so that they can be ready to receive the initial frame of
the stream. It includes some information to decode and play
video such as its resolution and frame rate. Throughout the
session, the streaming-source changes it’s position through the
sender nodes. During the streaming, 3-5 nodes are set to leave
in every interval between collection phases. The period is of
60 seconds. Here the link delays vary from 10[ms] to 100[ms]
and the initial degree bound for each node is 4. Each node’s
degree bound is dynamically changed to enhance the media

pc2

pc1

pc3

pc4

pc5

pc2

pc1

pc3
pc4

pc5

(a) (b)

wired links
wireless links
cross traffic

Figure 9. Degree Adaptation Experiment

delivery performance on the tree as described in Section 4.
And also, we set STS to select its sender nodes increasingly
with the total node count in a manner to make the senders,
which includes the initial node as well, occupy 20% of the
entire nodes.
[Diameters and S-Diameters]: We have measured the dy-
namics of diameters and s-diameters. We have used the same
scenario for 10 cases each of which has different locations for
sender nodes, and have measured the average for every 25 sec-
onds. The measured variance is shown in Fig. 8. We can see
that the diameter of STS is held higher than that of MODE
(Fig. 8-(a)). But s-diameter, which counts more in multime-
dia streaming, is held smaller in STS according to the results
shown in Fig. 8-(b).
[Degree Adaptation]: We have checked whether the degree
adjustment strategy described in Section 4 works well. For
that we have set the 2 scenarios shown in Fig. 9 which illus-
trates a part of the overlay nodes (machines) we used and the
802.11b wireless links. Fig. 9-(a) represents a case, where
a congestion occurs on a unicast link between 2 nodes, and
Fig. 9-(b) is another case, where a congestion occurs on the
physical network link connected to a node. For each of these
cases we have used a 256 Kbps media stream as the multicast
media and a wireless node to make the congestions. And also
the lower threshold of the bitrate, below which a node detects
that a network congestion has occurred, has been set to ���
(205 Kbps) of the stream’s real bitrate.

In the first case, we have generated some additional traf-
fic across the link between ��� and ���. Then we could see
node ��� has detected the congestion on the down link to ���,

 0

 50

 100

 150

 200

 250

 0 100 200 300 400

MODE

 0

 10

 20

 30

 40

 50# of nodes
di

am
et

er
 [m

s]

of

 n
od

es

 50 155 250 350
time [s]

 60 300
STS

 0

 50

 100

 150

 200

 250

 0 100 200 300 400

MODE

 0

 10

 20

 30

 40

 50# of nodes

s-
di

am
et

er
 [m

s]

of

 n
od

es

 50 155 250 350
time [s]

 60 300
STS

(a) Diameters (b) S-Diameters

Figure 8. Dynamics of (a) Diameters and (b)S-Daimeters

where it has sent a compulsory-leave message to ���. Then
��� has successfully left and rejoined the session. In the sec-
ond case, we have generated a separate process which requires
some additional traffic, which is enough to make a congestion
on the physical network link, on ���. Here we have found that
nodes ��� and ��� have detected that downward links are con-
gested, after receiving RTCP reports from their child nodes.
Then ��� has sent a compulsory-leave message to ��� and ���
(these are randomly selected to occupy around 50% of the to-
tal connection count, in our experiments). Here, the forcibly
disconnected nodes, which are subjected to follow the ordi-
nary join procedure, has rejoined to the tree after 1.28 second
average value. And the isolated sub-tree, which was located
under the forcibly disconnected node, has reconnected to the
tree after average 0.43 milliseconds following the ordinary re-
pair procedure.

[Time Required for Join/Repair Procedures]: We have
measured the time required to complete the join and repair
procedures. The average and maximum values of them were
1212 and 1415 milliseconds for join and 318 and 734 millisec-
onds for repair successively. We can confirm that the time re-
quired for a repair procedure is small even in the worst case.
Considering the fact that the repair procedure completes less
than in one second, we do not have serious distortion in play-
back of received video. Here, the time for join procedures
remains higher. This is because we have made each joining
node wait at least 1 second before making a link to the tree.
It allows a node to receive as many permission messages as
possible (see Section 3.1). This contributes to let the joining
node connect to more closer node to the center node.

Currently STS nodes convey each multimedia data packet
to the corresponding neighbor nodes without using the cache
(the ring buffer) to support the real-time video conferences.
But, readers may understand that STS can be simply modi-
fied to adapt applications requiring a higher quality playback
(i.e.lower jitter, less stream loss) by using the ring buffer,
where the jitter can be made lower and the data loss in sub-
tree restoration process can be get to zero or to a negligible
value.

6 Concluding Remarks

In this paper, we have stated design and implementa-
tion of an overlay multicast protocol for interactive multime-
dia applications including media streaming. The protocol is
called Shared Tree Streaming (STS) protocol that constructs
a shared tree called s-DBMDT (sender-dependent Degree-
Bounded Minimum Diameter Tree) as an overlay network that
involves all the participants of the application.

Evaluating STS protocol on large-scale, real environments
such as PlanetLab is part of our future work.

References

[1] Y. H. Chu, S. G. Rao, and H. Zhang. A case for end system
multicast. In Proc. of ACM SIGMETRICS, 2000.

[2] Y. Nakamura, H. Yamaguchi, A. Hiromori, K. Yasumoto, T. Hi-
gashino, and K. Taniguchi. On designing end-user multicast for
multiple video sources. In Proc. of 2003 IEEE Int. Conf. on Mul-
timedia and Expo (ICME2003), pages III497–500, 2003.

[3] D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel. ALMI: An
application level multicast infrastructure. In Proc. of 3rd Usenix
Symp. on Internet Technologies and Systems, 2001.

[4] S.Y. Shi, J.S. Turner, and M. Waldvogel. Dimensioning server
access bandwidth and multicast routing in overlay networks. In
Proc. of ACM NOSSDAV 2001, 2001.

[5] S. Banerjee, C. Kommareddy, K. Kar, S. Bhattacharjee, and
S. Khuller. Construction of an efficient overlay multicast infras-
tructure for real-time applications. In Proc. of IEEE INFOCOM
2003, 2003.

[6] R. Cohen and G. Kaempfer. A unicast-based approach for
streaming multicast. In Proc. of IEEE INFOCOM 2001, 2001.

[7] H. Yamaguchi, A. Hiromori, T. Higashino, and K. Taniguchi. An
autonomous and decentralized protocol for delay sensitive over-
lay multicast tree. In Proc. of 24th IEEE Int. Conf. on Distributed
Computing Systems (ICDCS2004), pages p 662–669, 2004.

[8] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable
application layer multicast. In Proc. of ACM SIGCOMM 2002,
pages 205–217, 2002.

