
Stability Oriented Overlay Multicast for Multimedia
Streaming in Multiple Source Context

Thilmee M. Baduge, Kazushi Ikeda, Hirozumi Yamaguchi and Teruo Higashino
Graduate School of Information Science and Technology, Osaka University

1-5 Yamadaoka, Suita, Osaka 565-0871, JAPAN
Email:{thilmee, k-ikeda, h-yamagu, higashino}@ist.osaka-u.ac.jp

Abstract—In this paper, we propose a new overlay multicast
protocol designed for inter-active multimedia streaming applications.
The protocol considers the heterogeneity of end-hosts and tries
to minimize the negative impact (data outage) of end-hosts’ un-
announced departures. For this purpose, it concentrates on end-
hosts’ reliability (lifetime for instance) and constructs a shared tree
called ms-DDBMSST (multiple-source Degree and Delay Bounded
Maximum Stability Spanning Tree) as an overlay network that
involves all the participants of the application, in a distributed
manner. For a given set of nodes where some of them are senders,
ms-DDBMSST is a spanning tree where the receive path stability of
the entire tree is maximized while satisfying the delay-from-source
constraint and degree constraint for each node. We believe that this is
the first approach that defines ms-DDBMSST construction problem
and presents a distributed protocol for the purpose. Our performance
evaluation is based on experiments in both simulated networks and
PlanetLab that strongly shows the efficiency and usefulness of the
proposed protocol.

I. INTRODUCTION

Overlay multicast (Application Layer Multicast, ALM in short)
has become an important research topic in past decade because
of its flexibility. This flexibility is caused by ALM’s nature of
using end-hosts to perform one-to-many data forwarding, which
is known as multicast. ALM has the biggest potential to realize the
small to large scale group communication infrastructures such as
Internet games, white-board, audio or video streaming. In contrast,
reliability problems of end-hosts in ALM induce the one of major
drawbacks in terms of spreading through real world applications.
One major issue that comes up here is the heterogeneity of end-
hosts (referred to as nodes below) to the ALM session in which it
is involved; since less-desired nodes leave the session sooner and
often without any prior notification or cause delay and harmful
jitter even they stay the session, the participants in the downstream
suffer considerable degradation of quality. This paper addresses
this issue, the reliability of nodes. An example metric is lifetime
of nodes, which helps to build reliable and stable ALM. We argue
that this kind of node specific factors, which are independent from
the topological factors, have a great influence on the efficiency of
the underlying ALM scheme.

Meanwhile, we also consider the topological factors, which
are also important to support interactive multimedia applications.
We can point out the characteristics of interactive multimedia
applications as follows. (1) Such an application may have several
sources. For example, in video-conferencing, pictures of some
primary persons should be continuously delivered to the other
audience. (2) The delays from these sources to each sender is
bounded by a maximum delay constraint to make each node in-
teractive. (3) Each node is associated with a bandwidth limitation
(or degree in other words), where the number of outgoing streams

that can be handled by that node is restricted. Considering the
heterogeneity of Internet end-hosts, multicast topology may be
composed with nodes with variety of degrees including the large
portion of zero-contributors [1]. And (4) the nodes may show
different desires. For example, some survey studies conducted
with real world data traces have shown that the older nodes have
longer residual lifetimes [1]. This property helps to predict nodes
remaining lifetime to make the multicast topology more robust to
node departures.

In this paper, an ALM scheme to meet the above requirements
is proposed which aims at constructing a multiple-sourced tree
T , minimizing the bad affect caused by the heterogeneity of
nodes’ reliability on the entire tree. At the same time it assures
each node’s delay-from-sources to be within the provided delay
constraint under degree constraints. The contributions of this
paper can be summarized into, (i) formulation of a new problem
associating nodes’ reliability factors such as lifetime with delay
and degree constraints in a multiple-source context, (ii) proposing
of a decentralized heuristic algorithm which gradually transforms
a simple initial tree to the targeted tree, and (iii) discussion of
the extensive experiments conducted in PlanetLab to show the
proposal’s usability.

II. RELATED WORK

A lot of ALM schemes have been proposed so far targeting the
variety of Internet group applications in the current world. They
can be categorized into the following 3 major categories focusing
on each one’s design concern: (i) latency-first approaches, (ii)
restore-first approaches and (iii) other QoS concerned approaches.
The first one focuses on minimizing the latency between nodes.
Generally tree based approaches like [2], [3], [4] are considered to
meet these latency requirements. The second one mainly focuses
on restoring the overlay topology in case of collapse due to
nodes’ leaving. This is also critical when using ALM in real
world applications. Multiple path approaches where the redundant
paths are used in case of original path failure ([5], [6]), or restore
schemes where the overlay topology is re-established using a
previously or immediately calculated restore mission ([7], [8], [9])
are often used to realize this. The third one corresponds to the
ALM schemes like [10], [11], [12], which are targeted to provide
some other QoS features like bandwidth.

All the above schemes have only considered topological fac-
tors like node-to-node overlay link latency and node degree in
their protocols, and hence non-topological characteristics such as
heterogeneity of node lifetime and forwarding capabilities have
not been addressed for a long time. To our best knowledge,
[13] has first addressed this issue inspired by an analysis of

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

978-1-4244-2075-9/08/$25.00 ©2008 IEEE

some real-world data traces. They have proposed using nodes’
lifetime characteristics, where older nodes are selected as peers
for new nodes in their longest-first algorithm. After that, [14]
has also addressed this as “priority”, by which nodes lifetime
and/or bandwidth are referred. This has conducted simulation
experiments with some real-world data traces to find out which
metric among lifetime and bandwidth gives the better reliability
in terms of affect of node failures, when prioritizing them. Their
conclusions state that bandwidth prioritizing performs better. In
contrast to the centralized approach taken in [14], [15] proposes a
decentralized algorithm to build a reliable tree considering nodes’
lifetime.

Our proposal differs from the above lifetime aware approaches
in the following aspects. (i) Taking the multiple-source issue
into account to make the scheme more applicable to interactive
multimedia applications, (ii) associating a delay bound from all
sources which is indispensable to realize the interactivity, and
(iii) conducting experiments in PlanetLab to verify the usability
in real-world.

III. PROBLEM ANALYSIS

A. Problem definition

Let G = (R,E) denote a given undirected complete graph
where R denotes a set of receiver nodes (or simply nodes) and
E denotes a set of potential overlay links which are unicast con-
nections between nodes. Also the followings are given. dmax(r)
denotes the degree bound of node r ∈ R, h(i, j) denotes the delay
of overlay link (i, j) ∈ E, sc(r) denotes the normalized stability
coefficient of node r ∈ R (sc(r) ∈ [0, 1]), e.g. node lifetime, and
S denotes the set of source nodes. We note that a source node is
also a receiver node (S ⊆ R).

Our goal is to find a spanning tree T of G with maximum
tree stability, while the maximum overlay delay from S to nodes
in R does not exceed a given delay bound Dmax and degree of
each node r ∈ R (denoted by d(r)) does not exceed dmax(r). We
name this multiple-source Degree and Delay Bounded Maximum
Stability Spanning Tree (ms-DDBMSST) construction problem.
The tree stability of T (denoted as stabT) is defined as the sum
of path stabilities of all the source-receiver paths on T . The path
stability of the source-receiver path from s ∈ S to r ∈ R on
T (denoted as stabT (s, r)) is the multiplication of the stability
coefficients of nodes on the path. Their formal definitions are
given below.

stabT =
∑

(s,r)∈S×R

stabT (s, r)

stabT (s, r) =
{

1 (s = r)
sc(r′) · stabT (s, r′) (s �= r)

Here, r′ is the upstream neighbor of r on the path from s to r on
T .

The decision problem of ms-DDBMSST, that is, the problem
to find a degree and delay bounded, stability-bounded spanning
tree, is NP-complete. To prove this, we first need to say that for
any tree on G it can be verified in polynomial time whether the
tree satisfies the given bounds of degree, delay and tree stability.
Obviously this holds. Then we set the number of source nodes
and the stability coefficient of each node to one. Then the Degree
and Delay Bounded Spanning Tree decision problem, which is

1.0

.90 .80

.50

x : node spec = x

.70 .50 .50 .50

.50.50 .50

n0 : s=1.0, d=2
n1 : s=0.9, d=2

n2 : s=0.8, d=3
n3 : s=0.7, d=5

n4~n10 : s=0.5, d=2

1.0

.70 .80

.50.50 .50 .90 .50.50.50 .50

Source node n0

n1 n2

n3 n4 n5 n6 n7

n8 n9 n10

n0

n3 n2

n7 n9 n1 n4 n5n6 n8 n10

(a) (b)

Ta Tb

Fig. 1. Two simple methods that construct DBMSST: (a) stability-first (s-first)
and (b) stability-degree product-first (s·d-first)

known as a NP-complete problem [16], can be transformed to
our ms-DDBMSST decision problem in polynomial time.

Further, Degree Bounded Maximum Stability Spanning Tree
(DBMSST) construction problem has also been addressed in few
previous lifetime-aware schemes ([13], [14], [15]). The DBMSST
construction problem is a version of the ms-DDBMSST con-
struction problem, and it is considerably simplified from the
ms-DDBMSST construction problem in such a way that delay
is unbounded and the number of source nodes is set to one.
Though this problem is not our key concern, some characteristics
and methodologies discussed here are common with our ms-
DDBMSST construction. More precisely, the ms-DDBMSST con-
struction described in section IV consists of a refinement phase,
where nodes with ancestor-descendant relationship are swapped
to improve the stability of tree. Therefore, it is important to know
which property of nodes should be considered for this swapping
and the rest of this section discusses which property of nodes
should be prioritized to maximize the stability of tree.

B. Learning from DBMSST

1) Existing approaches: Fig. 1 illustrates two simple meth-
ods of constructing DBMSST presented in [14]. The stability
coefficients and degrees are given in the box of Fig. 1. In Fig.
1(a) the tree is constructed by greedily choosing the nodes with
maximum stability coefficient (this is called s-first), while Fig.
1(b) chooses the ones with maximum stability-degree product
(called s·d-first). The chosen nodes are connected to the cur-
rent tree at the peer node which provides the maximum path
stability in both methods. The tree stability of Ta is calculated
as stabTa

=
∑10

i=1 stabTa
(n0, ni)= (1.0·1) + (1.0·1) + (0.9·1.0) +

(0.9·1.0) + (0.8·1.0) + (0.8·1.0) + (0.8·1.0) + (0.7·0.9·1.0) +
(0.7·0.9·1.0) + (0.7·0.9·1.0) =8.09. In the same way, stabTb

becomes 7.9, and that says s-first approach is better for this
example.

2) Our approach to DBMSST problem: We describe a novel
and better centralized mechanism, which considers the remaining
node count in addition to the lifetime and degree. Later, by
simulation experiments, we show that this centralized scheme
performs better than the s-first and s·d-first approaches, which
have been used in the early-stage lifetime aware schemes such
as [13], [14] and [15]. And also we apply the key idea of this
centralized approach to the construction of ms-DDBMSST, which
is our main concern, where neither s-first nor s·d-first approach
is associated.

This consists of two main steps. First, it simply selects the peer
node p from the current tree, where p has the maximum path
stability with at least one residual degree. Second, the node for
adding to the tree is selected. For this purpose, a new metric called
estimated tree stability is introduced, and the node that maximizes
this value is selected at the second step. This procedure is repeated

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

until all the nodes are added to the tree. This is the key feature in
our approach. Note that the s-first and s·d-first approaches have
greedily selected the node with maximum lifetime or maximum
lifetime-degree product. In contrast, we estimate the stability of
the final tree at each selection step.

We define the estimated tree stability. Hereafter, Tcur+u denotes
the tree after adding node u to the current tree Tcur, Rrem denotes
the set of nodes that have not been included in Tcur+u, ŝc denotes
the average stability coefficient of nodes in Rrem, d̂ denotes the
average degree of nodes in Rrem, Rres denotes the set of nodes
that have residual degrees on Tcur+u and outd(t) denotes the
total out degree of tree t. For the tree Tcur+u, we expect that
the final tree T is obtained by organizing the nodes in Rrem

into the set of outd(Tcur) sub-trees and adding them to Tcur+u.
For the convenience, we denote these sub-trees by subT . Then
assuming sc(w)=ŝc and d(w)=d̂ for all w ∈ Rrem, we can define
the stability of subT as follows (s′ is the root node of subT).

stabsubT =
∑

r′ on subT

stabsubT (s′, r′)

= 1 + ŝc · d̂ + ŝc2 · d̂2 + · · · + ŝcm · d̂m

=
(ŝc · d̂)m+1 − 1

ŝc · d̂ − 1

Here, m = logd̂|subT | where |subT | = |Rrem|
outd(Tcur+u) (m is the

number of maximum hops from root in subT). The estimated tree
stability of the final tree T , Eu[stabT] can be defined as follows.

Eu[stabT] = stabTcur+u
+

∑
r′∈Rres

stabsubT ·stabTcur+u
(s, r′) · d(r′)

Before we add a new node to the tree, Eu[stabT] is calculated
for each u ∈ Rrem and the node that gives maximum value is
selected.

IV. MS-DDBMSST CONSTRUCTION

Before going deep into ms-DDBMSST construction method-
ologies, we discuss the nature of our problem. Our mission is to
find a spanning tree T that maximizes the tree stability stabT in
a manner where the degree bound of each node is not violated
and the delay of any source-receiver path on T does not exceed
the given maximum bound Dmax.

Hereafter we let depthT denote the maximum delay of source-
receiver paths on T . As we have seen before, stabT is influenced
by nodes’ stability coefficients and degrees, while overlay link-
delays and node degrees affect depthT . This implies that stability
coefficients of nodes and delays of overlay links play key roles in
optimizing stabT and depthT successively. On the other hand, it
is known that there is no correlation between node’s lifetime and
link delays [13] and similar argument can be applied to the case
of forwarding capabilities of nodes and link delays. Therefore,
it is easily understood that stabT and depthT are non-correlated
metrics. This makes it clear that ms-DDBMSST construction is
a task of optimizing two independent metrics, which prevents
us from going for easy solutions, such as using a variation of
minimum depth spanning tree algorithm [2] with expressions like
α · stabT + β · depthT .

Following the above observations, we apply a two-step tree
construction algorithm to separate stabT and depthT optimiza-
tion. There are (a) the initial tree construction step that optimizes

depthT and (b) the tree refining step that optimizes stabT . Consid-
ering the fact that depthT should not exceed the delay constraint
Dmax, we use the minimum depth spanning tree algorithm [2]
to build the initial tree 1. By this we can achieve almost the best
possible depthT which is probably lower than the given delay
constraint Dmax. Then, the tree refining process takes place by
moving nodes throughout the tree so that stabT is improved. It is
easily understood that this refining step makes depthT increased
in higher possibility as it destroys the depthT -optimized initial
tree in being transformed into the stabT -optimized one. So we
have to make sure that no refining step violates the maximum
bound for depthT . Note that if depthT is greater than Dmax

after the initial tree construction step due to too tight Dmax, no
refining takes place for such cases obviously, and this initial tree
remains as it is. Therefore, we assume that Dmax suitable for real
world applications is larger than the depthT found by the initial
tree construction algorithm.

We assume that most of the participant nodes arrive before the
session starting time and a few cannot make it to time. So it is
feasible to build the initial tree using a centralized algorithm, as
mentioned above, because the streaming session is not still started.
However, no centralized scheme is preferred once the streaming
session is started to maintain a seamless streaming session.
Therefore, we go for a decentralized approach as the tree refining
procedure. Though there may be inter-session node joinings and
departures, we assume that they are handled by some existing
decentralized protocols such as [9] and mainly concentrate on the
initial tree construction and refining procedures. These procedures
are described in detail in the following sections 2.

A. Initial Tree Construction

The initial tree is built in such a way that maximum delay
from source nodes (depthT) is minimum. If all the source
nodes are located close to each other with small overlay link
delays between them, we can treat them as a single source
after arranging them into a single group. This makes it easy to
build the required tree. In this case we can use minimum depth
algorithm [2] to build a spanning tree with minimum delay
(depth) from the group of source nodes, because this group
stands for the root node of tree. However, generally sources
may be located anywhere and do not necessarily have smaller
overlay link delays between them. So making them into a group
will result in unnecessary overlay delays to the entire tree and
may make depthT larger. Therefore, we refrain from using
the grouping concept and use the following algorithm inspired
from the minimum depth algorithm. This builds the initial tree
starting from a randomly selected source node s0 as the root node.

1Although minimizing the depth is not an objective of our scheme, the
construction of minimum depth spanning tree is necessary at this stage to check
whether the given maximum depth constraint is reachable.

2Considering the scalability, a decentralized minimum delay spanning tree
scheme can be used to build the initial tree when the maximum delay constraint
is not so strict.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

01: Tnode ⇐ {s0}, Tedge ⇐ ∅, S ⇐ {s0}, R ⇐ R − {s0};
02: while (R �= ∅)
03: find r ∈ R\Tnode and r′ ∈ Tnode that minimizes
03: depth(Tnode∪{r},Tedge∪{(r′,r)})
04: Tnode ⇐ Tnode ∪ {r};
05: Tedge ⇐ Tedge ∪ {(r′, r)};
06: R ⇐ R\{r};
07: if (r is a source node) then S ⇐ S ∪ {r};
08: endwhile;
09: return (Tnode, Tedge);

B. Tree refinement

1) Protocol outline: Let us remind our mission here: improve
tree stability (stabT) in a decentralized manner, without violating
degree constraints and the upper bound for maximum delay from
sources (depthT). For simplicity, let us suppose that there is only
one source node positioned at the root of the tree. The most
common decentralized way for improving stabT in this case is,
to exchange nodes u and v on T whenever it yields a better
stabT . For instance, suppose that node u is the upstream neighbor
of node v, sc(u) < sc(v) and d(u) = d(v). According to the
definition of tree stability, swapping u and v improves stabT . So
it sounds like quite an easy task and various combinations of u and
v like parent-child, grand parent-grand child, siblings and random
combinations can be considered to reach the target. However,
the above transformations cannot be simply performed because
depthT may be violated. So a delay controlling mechanism should
be associated with these node transformations. We propose a
scheme for this decentralized controlling of depthT , where each
sub-tree has privilege to use only a portion of total remaining
maximum delay-play, which is expressed by Dmax−depthT . And
by assigning these portions in such a way where the summation
of them is equal to Dmax − depthT , we can always transform
nodes in each sub-tree without violating depthT restriction.

Our sub-trees for the above task are identified by making each
sub-tree have maximum K hops. Basically, in each sub-tree, its
root node u re-organizes the sub-tree to improve stabT . This sub-
tree is denoted by RefTu,K . And this process is done in a bottom-
up manner.

2) Protocol design: The refinement procedure consists of the
information collection phase which gathers the information re-
quired for the refinement and the node exchange phase which
takes place right after the information collection phase and ex-
ecutes the required node exchanges depending on the collected
information.

a) Information collection: In order to refine the tree, all
the nodes periodically collect the information required to execute
refine procedure by message exchange along the current tree.
The root node starts the information collection in the collection
phase for every (regular) interval by broadcasting synchronization
messages on the current tree. Obviously, the number of synchro-
nization messages is n − 1 where n is the number of nodes on
the current tree. When the root node (s0) sends synchronization
messages to its neighboring nodes, it assigns a node ID 0 to itself
and also assigns node IDs 1,...,d(s0) to those neighboring nodes.
The information included in this message are: (i) lists of node
IDs on the paths from s0 to other source nodes, (ii) delays to
source nodes from s0, (iii) the value of Dmax, and (iv) the value
of K. We assume the root node knows last two values, which are

application specific parameters.
Similarly, if a node v receives a synchronization message from

a neighboring node and if it knows that node ID n is assigned
to itself, it assigns node IDs starting from n × dmax + 1 up
to n × dmax + d(v) − 1 to the rest of its neighboring nodes
when it sends messages to them (dmax denotes the maximum
degree bound of all the nodes). Finally all the nodes in the
tree have unique node IDs. Note that these IDs are used to
identify parent-child relationship between neighboring nodes (a
smaller ID indicates a parent) as well as to determine descendant
node positions in node exchange phases. In addition to the
information received from the upstream node, node v includes
to the synchronization message for children; (v) D(s0, v), which
is the delay from the root node, and (vi) H(s0, v), which is the
hop count from the root node.

And also, using above (i), (ii) and (v), each node (say v) easily
calculates the delay (denoted by D(sf , v)) to the furthest source,
sf , which is used in the refine procedure.

b) Node exchange: A non-leaf node enters the collection
phase if it has received a synchronization message from its parent
and has sent synchronization messages to all its children. A leaf
node does not send synchronization messages. Instead, when it
receives a synchronization message, it enters the collection phase
and replies a collection message to its parent. Each non-leaf node,
except s0, sends a collection message to its parent node whenever
it receives collection messages from all the child nodes. The
information included in the collection message from node u to
its parent is described later in this section. Note that the number
of collection messages required here is (n − 1). So, totally, the
number of messages required for the collection of the current
status is only 2(n− 1), that is, only two messages are exchanged
on each link of the tree.

Each node selects replace candidates among the child nodes3.
Generally, node u selects its descending node w as u’s replace
candidate only if that replacement improves the tree stability of
the subtree RefTu,K . The tree stability improvement (denoted by
∆u,w) that can be achieved by replacing u with w is given by the
followings.

∆u,w =

∑d(u)
n=1

(
sc(w) − sc(u)

)
·stabTxn

+∑d(w)
n=d(u)+1

(
sc(w) − sc(u) · R · sc(w)

)
· stabTyn

(if d(w) ≥ d(u), Fig.2(b))∑d(w)
n=1

(
sc(w) − sc(u)

)
· stabTxn

+∑d(u)
n=d(w)+1

(
sc(u) · R · sc(w) − sc(w)

)
· stabTxn

(if d(w) < d(u), Fig. 2(c))

where R = sc(v) · · · sc(x1) (v is the parent of w), and here Tx1

exceptionally stands for the sub-tree excluding the descending
sub-trees Ty1 · · ·Tyd(u) .

The next step is to find out which candidate results a replace-
ment within RefTu,K’s delay portion. We consider each node
involved in node replacement and denote it as x. For instance, x
stands for u, wj (child nodes of u) and z (child nodes of wj) in
case of replacing u by wj in Fig. 3(a). Then, the delay portion

3The scope of this paper is restricted to K = 1 case, where K > 1 cases will
be some of our future work.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

(a)(b)

w

1 k’

k’2

u

1 k’+1 k’’

(c)

d(w) > d(u) d(u) > d(w)

k’= d(u) , k"= d(w)

k"-k’ child nodes of w are
moved together with w

k’-k" child nodes of u are
moved together with u

yx x x y

y y k’’y1y

w

k’21x x x

u

k’xk"+1x k’’y1y

u

w

k"21x x x

Fig. 2. Concept of replace candidate selection: (a) the initial tree (b) the tree
after swapping u and w when d(w) > d(u) (c) the tree after swapping u and w
when d(w) < d(u)

u

wj

v

wkw1

info(wi)

K=1

z1 zk

depth(Twi)

RefTu,K

swap(u,wj)
wj

u

v

wk
w1

info(wj)

z1
zk

RefTv,K

∆(w1) ∆(wk)
∆(u)

∆(z1)

∆(zk)

K=1

depth(Twj)

(a) (b)
Fig. 3. refinement of RefTu,K (a) before refining (b) after refining

allowed for each x is calculated as follows.

δ(x)max ={Dmax − D(sf , x) − depth(Tx)}/H(sf , x) (x�=z)
δ(z)max = δ(wj)max

Here, depth(Tx) is the maximum delay in the sub-tree rooted
at x and H(sf , x) is the hop count in the path from sf to x.
This equation assigns the remaining delay-play at node x equally
among the nodes in the path from the furthest source node sf .

Finally u selects the child w, which gives the maximum ∆u,w

and δ(x) is less than or equal to δ(x)max for all involving x,
where,

δ(x)=D(sf , x)new − D(sf , x)prev

D(sf , wj)new =D(sf , u)prev − D(v, u) + D(v, wj)
D(sf , u)new =D(sf , wj)new + D(wj , u)

D(sf , w)new =

D(sf , wj)new + D(wj , w) if d(u) ≥ d(wj)
(w is not moved along with u)

D(sf , u)new + D(u,w) else
(w is moved along with u)

D(sf , z)new =

D(sf , u)new + D(u, z) if d(wj) ≥ d(u)
(z is not moved along with wj)

D(sf , wj)new + D(wj , z) else
(z is moved along with wj)

After replacement takes place, wj sends its new parent v a
new collection message with (i) sc(wj), (ii) depth(Twj

) and
(iii) D(wj , v). If no replacement takes place, u sends a similar
collection message and refinement of RefTv,K is started when
v receives collection messages from all its child nodes. This
refinement procedure is propagated towards the top of the tree
until the root node receives the collection messages from all of
its child nodes.

c) Handling multiple sources: Though it is not clearly stated,
we did not pay much attention to multiple sources in the tree
refinement. Actually, it does not cause problems as long as the

(a)

: source nodes : non-source nodes l(n , n) : link-delay from n to n

depth(T1) depth(T3)

subT1

subT3

subT4subT2

s
depth(T4)depth(T2)

swap
n , n

Ta

j k j k

1

s0

s2

s3

n0 n1
n2

n3 n5

n4

(b)

depth(T1) depth(T3)

subT1

subT3

subT4subT2

s
depth(T4)depth(T2)

Tb
1

s0

s2

s3

n1 n0
n2

n3 n5

n4

0 1

Fig. 4. Dealing with multiple sources: Exchanging nodes on paths between source
nodes (a) before exchange (b)after exchange

exchanging nodes do not exist on a path between two source nodes
(in other words, no source node exists in the sub-trees routed at
exchanging nodes). That is because node re-organization by such
a sub-tree only makes sense to the nodes in that sub-tree in terms
of tree stability or maximum delay from sources. However, when
the refinement procedure progresses towards the top of the tree,
the nodes which do not follow the above requirement come across,
including source nodes. We call these nodes irregular nodes.

Here we describe the way that such nodes are treated using
the example in Fig. 4. Nodes n0 and n1 can be exchanged if
tree stability of the whole tree is increased and maximum delays
are not violated. Let us calculate the resulted tree stability gain,
∆n0,n1 .

∆n0,n1 = stabTb
− stabTa

stabTa
=

∑
0≤k≤4

∑
r∈R

stabTa
(sk, r)

∑
r∈R

stabTa
(s0, r) = sc(s0) · sc(n2) · sc(n0) ·

(stabsubT2 + sc(n1) · (stabsubT3 + stabsubT4))∑
r∈R stabTa

(si, r) (i = 1, 2, 3) can also be expressed in the same
way and then stabTa

is soon calculated. stabTb
can also be known

by similar method and then ∆n0,n1 can be evaluated to validate
exchanging n0, n1. Note that the maximum delay from sources of
Tb is validated before the actual replacement takes place. This can
be easily calculated by combining depth(TsubTk

) (k = 0, 1, 2, 3)
values and link delays around n0 and n1.

One important issue here is, it is impossible to cope with
irregular nodes at different places simultaneously, as each of them
is dominant on each other. Therefore, independent movements
may not give the expected result or may violate the delay
constraint. So when the refining process reaches an irregular node,
it asks root node for the permission and root node permits once all
regular node refining is done. And also the information about each
irregular node is sent to root node, where each of them receives
required data for the above calculations4.

V. EXPERIMENTS

A. Simulation Experiments

Extensive simulations have been conducted to evaluate how the
nodes on the tree can receive multimedia streams without outages.
The tree stability (stabT) is the metric used for this purpose,
because, higher the tree stability, lower the data outages occur
from the upstream. Experiments were carried out with up to 1,000
overlay nodes using our GUI-assisted ALM protocol simulator,
which is based on our middleware [17] for ALM protocols and
will be open to the public soon.

4lock-free control mechanism is not much time consuming as the amount of
irregular nodes is usually smaller

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

Here, we denote the setting of our experiments. The node-to-
node delays on the overlay network (a full mesh) were generated
from a standard distribution, where µ = 100[ms], σ = 20[ms]
(i.e. N(100, 202)). The degrees of nodes were set to follow a
Pareto distribution [14] with parameters a = 0.6 and b = 20.
We use Pareto distribution in GNU scientific library where the
distribution function is defined as p(x) = (a ∗ ba)/x(a+1) (x ≥
b). The lifetimes of nodes were used as stability coefficients of
nodes, and were set to follow a Pareto distribution with parameters
a = 1.2 and b = 1.

number of nodes 100 200 500 1000
Initial depthT [ms] 258 279 289 306
tree stabT 0.37 0.27 0.18 0.13

Dmax= depthT [ms] 480 472 481 463
500[ms] stabT 0.46 0.46 0.38 0.34

of link restore 72 107 378 301
Dmax= depthT [ms] 751 879 901 934
1[s] stabT 0.55 0.53 0.48 0.43

of link restore 136 235 456 502
Dmax= depthT [ms] 1207 1324 1372 1402
1.5[s] stabT 0.62 0.62 0.58 0.52

of link restore 216 292 691 673

TABLE I
PERFORMANCE OF PROPOSED PROTOCOL FOR VARIOUS DELAY BOUNDS

[Effect of maximum delay bounds (depthT)]: First we
have checked for the proposed protocol’s behavior at various
delay bounds with different numbers of nodes. Since our protocol
improves stabT under the given delay bound, the improvement
is small when the delay bound is very small. Table I shows this
situation. When the delay bound becomes large, the tree is refined
based on the given delay constraints and the value of stabT can be
improved. The value of stabT is degrading gradually with increase
of the number of nodes since in general a bigger tree is required
for a bigger delay constraint in order to maximize stabT .

centralized decentralized
stabT depthT stabT depthT # of link

[ms] [ms] restore

proposed 0.82 460 0.64 1238 843
s · d-first 0.80 536 0.62 1165 818
s-first 0.78 418 0.61 1330 827

TABLE II
SWAPPING POLICY COMPARISON

[Effect of node swapping policies]: We have compared
the performance of our node swapping policy with s · d-first and
s-first based swapping, where nodes with higher s · d product
and higher s are moved upwards. Here, basically a node u is
replaced with its child v if it improves the value of stabTu

where
Tu denotes the sub-tree rooted at u. This s · d product has been
used in some of the previous lifetime aware schemes like [14]
and [15]. Table II compares the performance of those methods.
Here we set depthT to be large enough (=2[s]) to allow each
method to work freely and also limited the number of source
nodes to one as those existing schemes only consider a single
source context. Our simulation results for the number of nodes =
500 show that the proposed method achieves better stabT for both
the centralized and de-centralized schemes. For the centralized
schemes, there exists no node swapping, but exists a policy for
node selecting order. Therefore, Table II compares the centralized
algorithm described in Section III-B2, with the s · d product and
s prioritized methods. The results show that our protocol is better
for both the centralized and de-centralized schemes.

 0

 2

 4

 6

 8

 10

 12

 0.1 1 10 100 1000

nu
m

be
r

of
 n

od
es

instability
(application / physical network delay)

Fig. 5. PlanetLab instability distribution

[Effect of source node count]: Another interesting aspect
to see is how our protocol works with different numbers of source
nodes. stabT , depthT [ms] values for source node count 1, 2,
3, 4 and 5 were (0.65,1427), (0.63,1398), (0.62, 1390), (0.58,
1452) and (0.56,1421) respectively. Here, Dmax and the number
of nodes were set to 1.5[s] and 500 respectively. This results
state that the performance degrades slightly when the number of
sources increases. This is because the nodes are more restricted
by multiple delay bounds to move when there are more sender
nodes.

B. PlanetLab experiments

We have evaluated the performance of the proposed protocol
through experiments on PlanetLab. The experiments were carried
out using our middleware [17]. This middleware supports imple-
mentation and evaluation of various kinds of ALM protocols.
We have implemented our protocol and two greedy algorithms
that construct a minimum delay tree and a maximum bandwidth
utilization tree respectively with greedy schemes. These greedy
algorithms selects current tree T ’s next adding node u from the
remaining nodes R − T in such a way, where T + u gives the
minimum depth (or maximum bandwidth utilization) among all
nodes in R. We have compared the performance of multimedia
streaming delivery among these three protocols.

1) Experimental environment: First, we describe our experi-
mental environment. PlanetLab nodes are located on all over the
world and we have randomly selected those nodes. The number of
terminals is 320. The terminal configuration is combination from
Pentium 3 (1.2GHz) to Pentium 4 (3.4GHz), and the memory
sizes vary from 512MB to 3.6GB. They use Linux OS version
2.6.12-1.1398 FC4.5.planetlab and JRE1.6 (Java version).

In order to determine unstable PlanetLab nodes, we have
compared physical network delay and application level network
delay. “ping” command can provide measures only for physical
network delay. However, application level packet forwarding
includes not only physical network delay but also delay caused
by node state, packet generation, queuing and so on. Here, we
define application level RTT(round trip time)/operating system
level RTT of each PlanetLab node as their “instability”. The
distribution of instability of each PlanetLab node is shown in
Fig. 5. It shows some nodes have much higher instability than
the others in real environments. We consider the nodes with more
than 1.5 instability are unstable.

2) Scenario of experiments: Jitter and bandwidth were selected
as the streaming evaluation metrics. Two scenarios were used
to compare the performance of our protocol and the greedy
algorithms. We have evaluated the average jitter and bandwidth for
(1) topology size and (2) the ratio of unstable nodes, respectively.

The scenario of the experiment (1) is as follows. First, 20 nodes
joined the application forming the initial topology. Then streaming

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

 100

 200

 300

 400

 500

 0 40 80 120 160 200

delay greedy proposed bandwith greedy

number of nodes

av
er

ag
e

ba
nd

w
id

th
 (

kb
ps

)

 10

 15

 20

 25

 30

 35
 40

 0 40 80 120 160 200
number of nodes

av
er

ag
e

jit
te

r
(m

se
c)

 50

 150

 250

 350

 450

 0 5 10 15 20 25
ratio of unstable nodes (%)

av
er

ag
e

ba
nd

w
id

th
 (

kb
ps

)

 15

 20

 25

 30
 35

 40

 45

 0 5 10 15 20 25
ratio of unstable nodes (%)

av
er

ag
e

jit
te

r
(m

se
c)

(a) (b) (c) (d)

Fig. 6. PlanetLab experiment results (a):average bandwidth vs number of nodes, (b):average jitter vs number of nodes, (c):average bandwidth vs ratio of instable
nodes, (d):average jitter vs ratio of instable nodes

was started after assigning a “source node” as the streaming-
source. Here, the node joined first was considered as the source
node and the streaming-rate was set to 500kbps, where we assume
a video streaming application. Note that we selected the same
node as the source node in each protocol. Next, another 20 nodes
were added and the same experiment was carried out, and this
was repeated until the number of nodes reached 200.

In the experiment (2), 200 nodes were selected and joined the
session. The ratio of unstable nodes is changed from 0% to 25%
at 5% intervals. The topology is constructed according to each
protocol and the streaming-rate is also set to 500kbps. The quality
of the streaming received at PlanetLab nodes can be confirmed
on our web site [18].

3) Experimental results: Fig. 6-(a) and Fig. 6-(b) show the
average bandwidth and jitter of each protocol over the number
of nodes, respectively. The average bandwidth utilization is de-
creased with the increasing number of nodes on the delay greedy
algorithm, which causes lower streaming qualities. The proposed
protocol achieves bandwidth utilization close to that of bandwidth
greedy algorithm, despite the latter is greedily optimized for
bandwidth utilization. The average jitter of the receiving stream
is lower on the proposed protocol compared to the other greedy
algorithms. In particular, the bandwidth greedy algorithm that
considers neither the delay nor the instability of nodes has higher
jitter. On the bandwidth greedy scheme, jitter is increased by the
unstable nodes reside close to the source node and this lowers the
bandwidth utilization. In contrast, such unstable nodes are located
as lower as possible in the tree and the quality of the streaming
is maintained higher. Fig. 6-(c) and Fig. 6-(d) also show that the
quality of the streaming is highly influenced by the unstable nodes
in the greedy algorithms.

These real environmental experiments show that our protocol
provides a better quality of streaming and scalability than delay
based and bandwidth utilization based greedy algorithms by taking
the instability of nodes into account.

VI. CONCLUDING REMARKS

In this paper, we have proposed a decentralized overlay mul-
ticast protocol for interactive multimedia applications including
media streaming. The protocol constructs a spanning tree where
the receive path stability of the entire tree is maximized while
satisfying the delay-from-source constraint and degree constraint
for each node. This can minimize the negative impact of end-
hosts’ unexpected leaves. The protocol is designed to cope with
multiple senders. Simulation experiments show that it can improve
the total receive path stability under given delay and degree
constraints, and that the more delay constraints are relaxed, the
more the total receive path stability is improved. Our PlanetLab

experiments show that the proposed protocol have outperformed
greedy algorithms in terms of bit-rate and jitter. The media files
received in both cases are available from our web site http://www-
higashi.ist.osaka-u.ac.jp/software/stable multicast.html.

REFERENCES

[1] K. Sripanidkulchai, B. Maggs, and H. Zhang, “An analysis of live streaming
workloads on the internet,” in Proc. of the 4th ACM SIGCOMM conference
on Internet measurement, 2004, pp. 41–54.

[2] S. Shi and J. Turner, “Routing in overlay multicast networks,” in Proc. of
IEEE INFOCOM 2002, 2002.

[3] S. Banerjee, C. Kommareddy, K. Kar, S. Bhattacharjee, and S. Khuller,
“Construction of an efficient overlay multicast infrastructure for real-time
applications,” in Proc. of IEEE INFOCOM 2003, 2003.

[4] D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel, “ALMI: An application
level multicast infrastructure,” in Proc. of 3rd Usenix Symp. on Internet
Technologies and Systems, 2001.

[5] V. Roca and A. El-Sayed, “A host-based multicast (HBM) solution for group
communications,” in Proc. of 1st IEEE Int. Conf. on Networking (ICN’01),
2001.

[6] P. Francis, “Yoid: Extending the internet multicast architecture,” 2002,
http://www.isi.edu/div7/yoid/.

[7] M. Yang and Z. Fei, “A proactive approach to reconstructing overlay
multicast trees,” in Proc. of IEEE INFOCOM 2004, 2004, pp. 2743–2753.

[8] H. Yamaguchi, A. Hiromori, T. Higashino, and K. Taniguchi, “An au-
tonomous and decentralized protocol for delay sensitive overlay multicast
tree,” in Proc. of 24th IEEE Int. Conf. on Distributed Computing Systems
(ICDCS2004), 2004, pp. 662–669.

[9] T. M. Baduge, A. Hiromori, H. Yamaguchi, and T. Higashino, “Design and
implemetation of overlay multicast protocol for multimedia streaming,” in
Proc. of 34th IEEE Int. Conf. on Parallel Processing (ICPP2005), 2005, pp.
41–48.

[10] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable application
layer multicast,” in Proc. of ACM SIGCOMM 2002, 2002, pp. 205–217.

[11] Y. H. Chu, S. G. Rao, and H. Zhang, “A case for end system multicast,”
in Proc. of ACM SIGMETRICS, 2000, tools are provided: http://www-
2.cs.cmu.edu/ streaming/index.html.

[12] Y. Nakamura, H. Yamaguchi, A. Hiromori, K. Yasumoto, T. Higashino, and
K. Taniguchi, “On designing end-user multicast for multiple video sources,”
in Proc. of 2003 IEEE Int. Conf. on Multimedia and Expo (ICME2003),
2003, pp. III497–500.

[13] K. Sripanidkulchai, A. Ganjam, B. Maggs, and H. Zhang, “The feasibility of
supporting large-scale live streaming applications with dynamic application
end-points,” in Proc. of ACM SIGCOMM 2004, 2004, pp. 107–120.

[14] M. Bishop, S. Rao, and K. Sripanidkulchai, “Considering priority in overlay
multicast protocols under heterogeneous environments,” in Proc. of IEEE
INFOCOM 2006, 2006, pp. 1–13.

[15] G. Tan and S. A. Jarvis, “Improving the fault resilience of overlay multi-
cast for media streaming,” IEEE Transactions on Parallel and Distributed
Systems, vol. 18, no. 6, pp. 721–734, Jun. 2007.

[16] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness (Series of Books in the Mathematical Sciences),
3rd ed. W.H. Freeman & Company, 1979.

[17] K. Ikeda, T. M. Baduge, T. Umedu, H. Yamaguchi, and T. Higashino, “A
middleware for implementation and evaluation of application layer multicast
protocols in real environments,” in Proc. of the 17th International workshop
on Network and Operating Systems Support for Digital Audio & Video
(NOSSDAV 2007), 2007, pp. 125–130, tools are provided: http://www-
higashi.ist.osaka-u.ac.jp/software/ALM/middlewareAPI/.

[18] T. M. Baduge, K. Ikeda, H. Yamaguchi, and T. Higashino, “Our web site,”
http://www-higashi.ist.osaka-u.ac.jp/software/stable multicast.html.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

	Select a link below
	Return to Main Menu

