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Abstract—To support rescue activities of first responders is
crucial at disaster sites. Especially, provisioning location and
situation information is indispensable for those first responders
to efficiently rescue injured people in unknown places with
a lot of buildings such as private properties (like factories)
and university campus. In such an extreme situation, seamless
indoor/outdoor maps will be of substantial aid for the first
responders. In this paper, we propose a method of creating an
indoor/outdoor map by a first responder team. We assume some
of them are equipped with range scanners and all the members
have GPS and WiFi devices. Then the presence of obstacles
and movable areas is estimated by combining information from
different sources (like GPS, WiFi and range scanners) with
different confident levels. Since these confident levels depend on
scenarios and environments, we design an “adaptive information
fusion” algorithm that automatically estimates the confident
levels to optimize the precision of the generated map. We have
demonstrated our method in several experiments with real sensor
data.

Keywords-map generation, indoor/outdoor map, range scanner,
position information

I. INTRODUCTION
As every country has a risk of disasters like big earthquakes

and serious accidents which unfortunately happen from time
to time, rescue teams are organized and well-trained to engage
in rescue operations such as finding injured people who need
emergency help. Since those people have been wounded due to
furniture fall-down or some other reasons, they often cannot
move by themselves. To help all those injured, rescue team
members need to seek the whole disaster area where they may
not be familiar to. Although digital maps (like Google maps)
may be available to the team members, they do not provide
detailed information on shapes and locations of buildings if
the site is private property. Furthermore, when the buildings
have collapsed due to earthquakes, it gets much harder for
the team members to recognize the situation. To make matters
worse, digital indoor floor maps are not usually available. For
more efficient search that covers the whole region including
indoor space at unknown sites, team members need to share
an indoor/outdoor digital map with sufficient accuracy.
There is national project funded by the Japanese ministry

[1] to develop a sensing system that collects vital signs of
injured people by attaching small wireless sensor nodes to
their fingertips. It enables to monitor their vital conditions
in such situations that many people are injured but there

are not sufficient human resources to rescue all those people
simultaneously. Based on a number of discussions with rescue
team members and doctors through this project, Minamimoto
et. al. have reached the solution in previous literature [2], [3]
where position and ad-hoc communication logs are collected
via GPS and WiFi devices of the team members, and then
analyzed to obtain estimation of building shapes and locations.
The motivation to this approach is requirement for simple and
efficient map estimation at such unknown sites.
However, there are still other needs which are also very

important to support rescue activities. Firstly, indoor map
estimation is quite mandatory as well as outdoor maps.
For example, in some accidents, carbon monoxide will be
generated and will cause serious damage to indoor people.
Big earthquakes may also cause a lot of indoor victims due
to collapse of stuff such as office furniture and shelves at
shops. Secondly, there is a certain limit on sensing capabilities
when only wireless and GPS devices are utilized. Actually,
wireless beacons substantially help to obtain coarse-grained
2D view of building shape and location, since buildings
between two nodes block the beacons with high probabilities
[2], [3]. However, they cannot directly capture the surface of
walls, which results in less precise maps where pathways are
often missed and the shapes of buildings are all abstracted
to rectangles. Even worse, beacon-based estimation does not
work indoors, so we need some alternative for more accurate,
efficient indoor/outdoor map estimation.
In this paper, we propose a method for simultaneously iden-

tifying indoor pathways as well as outer shape and location of
the buildings. One crucial design issue is reasonable choice of
equipments. As a solution, we employ laser range scanners
(LRSs) (or range finders in other words) [4] which can
horizontally scan the space (e.g., with a viewing angle of 270◦)
to detect presence of objects with high precision. Meanwhile,
their scan range is limited (the effective range is usually
around 20m in most consumer products) compared to wireless
beacons which usually travel over 100m. More importantly,
LRSs are rather expensive so that not all the team members
can be equipped with them. Considering these limitations, the
main focus of the proposed method is to achieve faster and
more accurate map estimation by simultaneous use of LRSs,
wireless beacons and GPS positioning, where the features and
precision of their measurement data are quite different. For
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this purpose, we design information fusion approach where the
levels of estimation confidence are also estimated within the
map estimation process. Since GPS signals are not available
indoors, position estimation via Pedestrian Dead Reckoning
(PDR) (using accelerometers and digital compasses etc.) is
also supported to recognize indoor pathways with LRSs.
Simulation experiments assuming realistic sensor models

and field experiments using real laser range scanners have
been conducted at several locations of the Osaka University
campus. The results have shown that the map estimation was
much faster and more precise than the beacon and GPS-based
method in the previous work. Also the applicability of the
method has been verified by emergency scenarios which have
been designed in cooperation with medical doctors in rescue
teams.

II. RELATED WORK AND CONTRIBUTION
A. Why does not Robotic SLAM work?
In autonomous robotics, considerable research efforts have

been made for Simultaneous Localization and Mapping
(SLAM) techniques [5], [6], [7] since recognition of surround-
ing environment is essential for mobile robots to determine
their behavior. They typically employ cameras, range mea-
surement sensors (e.g., laser range scanners) and gyroscopes
to create a local map on each robot, and then the entire map
of the environment is derived by fusing the local maps of
all the robots based on their positions and poses estimated
by dead reckoning. The goal of our method is partially
similar to these SLAM methods in the sense that it also
aims to recognize the surrounding unknown environment. But
unfortunately, we can hardly apply the SLAM directly to our
case due to the following reason. Unlike robots, we cannot
employ a detailed kinematic model for dead reckoning in
tracking first responders. A possible alternative is pedestrian
dead reckoning (PDR) [8], [9], [10], which has been studied
for location-based services in ubiquitous computing. Some
literature such as [8], [9] assumes inertial sensors and digital
compasses mounted on fixed parts of the user body (e.g., foot,
waist, and a helmet). More recently, mobile-phone-based PDR
methods [11], [10] have been also investigated to enhance
applicability for various ubiquitous services. Despite those
highly sophisticated PDR techniques, large error still occurs
due to irregular and unpredictable motion of first responders
being engaged in rescue activities. Furthermore, unlike robot-
based SLAM, it is not realistic to impose additional burdens on
those responders to measure the environment. Consequently,
measured data obtained from the sensors would be highly
unreliable, which also may confuse the mapping process.

B. Mobile Sensor Approach
Xuan et. al. propose indoor map estimation using mobile

sensors[12]. They use the 3-axis accelerometers and the 3-
axis magnetometers in the smart phone. Also they use the
piezometer in a Nike running shoe. This method estimates
orientation of buildings and length of wall based on PDR.
They should walk along the walls in buildings many time.

However, in our case, it is not preferable to impose a limit on
the movement of the first responders.
Wireless sensor networks have provided different ap-

proaches for detecting the shapes and positions of objects.
Wang et. al. [13] presented a method to identify boundary
of the sensor network topology, which usually has physical
correspondence such as building floor plans. However, such
methods require dense deployment of sensor nodes, and thus
are not suitable for disaster situations where rapidly grasping
overall situation is important.
For reasonable mapping in disaster areas, Minamimoto

et. al. have proposed a map generation method using GPS-
equipped mobile devices carried by the first responders [2],
[3]. Although it quickly builds a coarse-grained map, it does
not support indoor mapping since GPS rarely works indoors.
Another challenge is that reliability of GPS and wireless
communication logs significantly depends on the environment;
performance of GPS can be degraded in urban canyons, while
wireless signal propagation between the nodes can be affected
by multipath effect. Considering such potential error-inducing
factors, more adaptive and flexible approach is preferable.

C. Data Fusion Technique
To obtain accurate knowledge from low-cost sensors or un-

reliable measurement, multiple information fusion techniques
have been used in many diverse application areas such as
Intelligent Transportation Systems [14], [15], object tracking
[10], [16], and activity recognition [17]. The common idea is
that combining data from multiple information sources could
help complement insufficient data and reduce uncertainty. A
basic approach is to employ Bayesian inference that uses prob-
abilities to represent degrees of belief [18]. Then, subjective
estimates can be made based on well-known Bayes’ rule.
It was generalized in Dempster-Shafer theory of evidence,
allowing to distribute support for proposition not only to a
proposition itself but also to the union of several propositions
to handle uncertainty [17]. Artificial neural networks (ANNs)
have also been perceived as a powerful and self-adaptive
tool, but choosing the most appropriate network topology
for the problem is a challenge [15], [16]. Another widely-
used approach is summing fusion, where confidence of each
proposition is summed so that the one with the highest overall
result is adopted [19]. It is very simple and thus suitable for
large-scale deployment, so that the decision fusion mechanism
of our mapping algorithm basically relies on the idea. To
identify appropriate confidence function is a key to ensure
reasonable performance with this scheme.

D. Our Contribution
Based on the discussion above, our contribution is two-

fold. First, we propose a novel method for instantly creating a
precise indoor/outdoor map that seamlessly covers the whole
disaster site. For this purpose, we assume that first responders
hold GPS-equipped mobile devices during their rescue activity,
while some of them wear a special jacket to which an LRS is
attached. Combining information from multiple sources (i.e.,
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Fig. 1. System Architecture and Operation

GPS, PDR, WiFi, and LRSs), it achieves fast and accurate
mapping. Our extensive simulations and field experiments
show that the use of LRSs enables recognition of indoor
pathways and precise outer shape of the buildings, which has
yet to be solved in the previous work. We also show that
precise information from LRSs greatly helps to accelerate the
map generation process. Secondly, we introduce a novel infor-
mation fusion algorithm, called adaptive information fusion.
By estimating the confidence of each information sources, it
autonomously adapts to various environments (including both
indoor and outdoor) to achieve robust mapping.

III. METHOD OVERVIEW
A. System Architecture
Fig. 1 illustrates system architecture and operations. We

consider regions that contain buildings and street/pathways
between them. Our system consists of a centralized server
and a team of mobile nodes (first responders). Each mobile
node has a GPS receiver and a wireless communication
device with WiFi-level transmission range (e.g. at least several
tens of meters with clear LoS). The estimated (maximum)
transmission range is referred to as RC . Some of mobile
nodes have Laser Range Scanners (denoted as LRSs) with 3D
orientation information, which can be obtained by combination
of several motion sensors and geomagnetic sensors. Mobile
nodes walk for rescue operations, and LRS nodes may enter
buildings to scan their inside. As shown in Fig. 2(a), LRSs are
attached to LRS holders to scan space horizontally. However,
an ideal pose cannot be always maintained, and as illustrated
in Fig. 2(b), LRSs may scan the ground and floors rather than
walls. Therefore, such noise should be eliminated from the
measurement, and we will discuss this issue later.

B. Measurement by Mobile Nodes
All mobile nodes record positions and neighbor measure-

ments and LRS nodes also record wall measurement. The
position measurement is done by each node’s GPS and/or
PDR. Nodes without PDR capability (non-LRS nodes) become
position-blind inside buildings, and during the time they record
the “unknown” state. Nodes identify indoor/outdoor positions
by GPS signal availability, and this information is attached
to the position measurement. The neighbor measurement is

(a) (b)
Fig. 2. Attachment of LRS: (a) LRS-equipped Vest (used in experiments),
(b)Example of Erroneous Data.
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Fig. 3. LRS Scan Area

done by beacon monitoring. Each node periodically transmits
beacons to its neighbors to let them know his/her presence. If
node i transmits a beacon with a sequence number at time t,
then it records its transmission. If node j receives a beacon
from node i at time t, then (i, j) is recorded with the sequence
number as a successful beacon transmission event from i to
j. Finally, the wall measurement is done by LRS. Each
LRS-node continuously scans space by LRS, and the space
is represented as a fan-shaped 2D area with radius RL and
angle θL. By using LRS, the distance to the closest object
in each angle in [−θL/2, θL/2] with step interval ΔθL is
obtained where angle 0 represents the LRS orientation ωh as
shown in Fig. 3.

C. Collection of Measurements
Measurements by mobile nodes are uploaded to a single

server, via 3G cellular or other broadband technologies. Al-
ternatively, we may set a portable server (like a laptop) and
WiFi base stations at the site for more severe conditions where
broadband networks and servers die or are not available. We
assume that the timeline is divided into time windows of length
Δt. We may choose appropriate length asΔt considering GPS,
beacon, and LRS measurement intervals.
From position measurements, we generate position logs for

each pair of time window k and node i (each log is denoted
by P k

i ). P k
i is either the estimated coordinate (or “unknown”)

with an indoor or outdoor flag. If there is no measurement
during the time window, we may fill the gap by interpolation
or some other techniques. From the neighbor measurement
and the above position logs, we generate communication
logs for each pair of time window k and node i (each log
is denoted by Ck

i ). Ck
i contains a set of neighbors within

the maximum transmission range RC and indicates whether
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Fig. 4. Map Generation Process

those neighbors could receive node i’s beacon(s) transmitted
during time window k or not. For example, assume node
i transmitted a beacon at position P k

i and nodes u, v and
w are those neighbors within RC from P k

i . If only u and
v could hear the beacon, then Ck

i = {u, v, w} indicating
that w could not receive the beacon even though w was
in the expected transmission range. Finally, from the wall
measurement by LRS and the above position logs, we generate
LRS logs for each pair of time window k and node i (each
log is denoted by Lk

i ). LRS mounted on human may detect
different objects according to their pose and environment
(such as ground/floor surface detection shown in Fig. 2(b)).
We eliminate such measurement that scans with deviated
vertical orientation to eliminate such errors. Additionally, long
scan range may increase errors since the number of laser
beams on the object surface decreases as distance increases.
Therefore, although consumer-level LRSs usually have 20m
or longer ranges[4], we limit the range around 10m (i.e. we
set RL = 10m). By the above, we finally obtain Lk

i that
consists of distance information for each (absolute) orientation
θh (h ∈ [�(ωh − θL/2)/ΔθL�, �(ωh + θL/2)/ΔθL�]).
In summary, for each time window k and node i, we have

P k
i , Ck

i and Lk
i as position, communication and LRS logs,

respectively (some logs may be empty).

D. Map Generation Algorithm Overview

Initially, we have a white map that has been divided into
square cells of the same size. We refer to (x-th, y-th) cell as
c(x, y).
Six non-negative likelihood values are associated with

each cell. Hp:o(x, y) and Hp:m(x, y), determined by position
and LRS logs, denote the likelihood values that c(x, y) are
in obstacle area and movable area, respectively. Similarly,
Hc:o(x, y) and Hc:m(x, y), determined by position and com-
munication logs, denote the likelihood values that c(x, y)
are in obstacle area and movable area, respectively. These
values are for outdoor map generation. For indoor cases,
we introduce H̃p:o(x, y) and H̃p:m(x, y) that correspond to
Hp:o(x, y) and Hp:m(x, y), respectively. Both indoor and out-
door map generation is performed simultaneously, according

Fig. 5. Surface Adjustment by LRS measurement

to the indoor/outdoor flags of position logs.
The outline of outdoor map generation is illustrated in

Fig. 4. (i) Likelihood Estimation from Position and LRS
logs. Since position and LRS logs indicate movable area and
obstacles around nodes, we update Hp:o(x, y) and Hp:m(x, y).
Fig. 4(a) visualizes these likelihood values where white mean 0
likelihood values. (ii) Likelihood Estimation from Position
and Communication Logs. We also update Hc:o(x, y) and
Hc:m(x, y) by communication logs and position logs. We
assume beacon reception by node j from node i is successful
only if they are within RC distance with a clear line of sight.
Therefore, cells between two positions with successful beacon
transmission are likely to be movable cells, and to be obstacle
cells otherwise. Fig. 4(b) visualizes these likelihood values.
(iii) Map Generation from Likelihood. When we need to
obtain a map, we combine the likelihood for each cell. The
weights in combining these values are determined online, by
analyzing the three logs (Fig. 4(c)). The weights are adaptively
updated (Fig. 4(d)) as logs are accumulated. (iv) Anti-Aliasing
using LRS logs. LRS logs that are expected to improve the
surface estimation are used for such a purpose as illustrated
in Fig. 5.
For indoor cases, communication logs are not reliable since

indoor wireless propagation is much more complex. Therefore,
we skip step (ii) in indoor cases. Also the position logs
are generated by PDR, which has different characteristics of
errors. Therefore, we provide a different algorithm for indoor
cases.
The weights should appropriately be determined based on

their confidence levels of three types of logs. The confidence
levels are dependent on LRS node and non-LRS node density,
node mobility, scan and communication ranges and many other
factors. For example, if we have more LRS nodes, the amount
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Fig. 6. Obstacle Estimation by LRS Logs

of LRS logs may increase, and Hp:o(x, y) and Hp:m(x, y)
should be weighted more than Hc:o(x, y) and Hc:m(x, y)
(LRS-based estimation is considered more reliable). Therefore,
we try to maximize the confidence of the mixed likelihood.
For this purpose, we automatically determine the best set of
weights in our map estimation process.

IV. DESIGN DETAILS
We describe the design details in the following subsections.

A. Likelihood Estimation from Position and LRS logs
Recall each LRS log Lk

i of node i at time window k is a set
of distance data dh for θh (h ∈ [�ωh − θL/2)/ΔθL�, �(ωh +
θL/2)/ΔθL�]), and the distance shorter than RL indicates
an obstacle in the orientation. Although we cannot know the
thickness of the obstacles by LRS scan, building sizes are
usually ten meters or more and cells beyond the surface are
likely to be obstacle cells. This may be a wrong estimation,
but such erroneous data are expected to be eliminated as many
logs are applied. Fig. 6 illustrates this process. From cell P k

i ,
all the cells to orientation θh with distance over dh up to RL

are regarded as obstacle cells. Furthermore, trajectory between
two subsequent positions P k

i and P k+1
i consists of movable

cells. For simplicity, the trajectory is approximated by a line
segment and these cells on the line are regarded as movable
cells.
We consider the effect of position errors in updating

likelihood values of cells. In this paper, we assume that
distance errors of GPS follow normal distribution N (0, σ2

g)
and directional errors are uniform. We let fg denote the
probability distribution function of GPS distance error for
relative coordinates (Δx,Δy) from the true coordinates. If
cell c(x, y) is regarded as an obstacle cell (or movable cell),
for each cell c(x+Δx, y +Δy) we add the following value
e(Δx,Δy) to the likelihood value Hp:o(x+Δx, y +Δy) (or
Hp:m(x+Δx, y +Δy)) if P k

i is outdoor, and add the same
value to the likelihood value H̃p:o(x+Δx, y +Δy)
(or H̃p:m(x+Δx, y +Δy)) if P k

i is indoor where S denotes
the cell length.

e(Δx,Δy) =

∫ S
2

−S
2

∫ S
2

−S
2

fg(u+ SΔx, v + SΔy)dudv (1)

In the normal distribution, almost all (99.74%) of the values
are within the range ±3σg. Therefore we update those cells
within distance 3σg from c(x, y). As for PDR, we may
follow the PDR error model in literature (such as our indoor
localization [11]), but they assume mobility without mobility
restrictions. Meanwhile, we focus on restricted mobility in

indoor cases where mobile nodes move on corridor or hall-
ways to find movable pathways in rescue operation. Also in
indoor cases, LRS measurement is much more stable than
outdoor cases since floors are flat and hallways are narrow
(easy to track continuous walls). Considering these facts, we
approximate PDR by straight lines unless a sudden change
of orientation is detected. After the orientation changes, we
restart approximating PDR by a new line. Therefore, we have
directional errors for each line and add likelihood values in a
similar way as the above GPS case.
Formally, Hp:o(x, y) and Hp:m(x, y) are calculated and

updated as position and LRS logs are updated. At time window
0, Hp:o(x, y) and Hp:o(x, y) are set to zero. (1) For each pair
of P k

i and θh ∈ Lk
i , label the cells on this radial line (length

RL) within distance dh from P k
i with “movable” and label the

cells between dh and RL with “obstacle”. Also label all those
cells with the indoor/outdoor flag of P k

i . (2) For each pair of
P k−1
i and P k

i , label the cells between them with “movable”.
Also label all those cells with the indoor/outdoor flag of P k

i .
(3) For each cell c(x, y) labeled with “obstacle” and “outdoor”,
add e(Δx,Δy) of Eq. (1) to Hp:o(x+Δx, y +Δy). (4) For
each cell c(x, y) labeled with “movable” and “outdoor”, add
e(Δx,Δy) of Eq. (1) to Hp:m(x+Δx, y +Δy). We omit the
indoor cases since the process itself is essentially the same.

B. Likelihood Estimation from Position and Communication
Logs
We introduce a simple likelihood estimation method by

communication logs. No obstacle is assumed between two po-
sitions with successful beacon transmission, and the presence
of obstacle between them with transmission failure. This is not
always true since the real world wireless propagation is hard
to predict. For example, diffraction and reflection by building
walls may happen in building canyon, which may result
in unexpected success of communication beyond obstacles.
Also transmission failure may occur by other reasons such
as interference. We consider that these phenomena that cause
estimation errors are more likely to occur as two nodes are
more distant. Thus we introduce the following parameter that
reduces the likelihood to be added to “obstacle” cells

p(d) = 1− d

RC
(2)

where d is the distance between nodes.
Similarly with the previous section, GPS errors should be

considered. We use the same e(Δx,Δy) in Eq. (1). In case of
obstacle cells, we use e(Δx,Δy) multiplied by p(d) to add
the reduced likelihood value to cell c(x+Δx, y +Δy).
Formally,Hc:o(x, y) andHc:m(x, y) are updated as follows.

These values are initially set to zero. (1) Label cells on the
line segment between node i and node j with “movable” if
j ∈ Ck

i . (2) For each cell c(x, y) labeled with “movable”, add
e(Δx,Δy) to Hc:m(x+Δx, y +Δy). (3) Label cells on the
line segment between node i and node j with “obstacle” if
j ∈ Ck

i . (4) For each cell c(x, y) labeled with “obstacle”, add
p(d) · e(Δx,Δy) to Hc:m(x+Δx, y +Δy) where d is the
Euclid distance between i and j.
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C. Map Generation from Likelihood Values
An outdoor map is obtained by the four likelihood values

Hp:o(x, y), Hp:m(x, y), Hc:o(x, y) and Hc:m(x, y) for each
c(x, y). Since they are independently updated, and since
confidence levels of these information sources are different
depending on scenarios and environments, we design an
adaptive algorithm to determine the weights (coefficients)
in linear combination. We introduce the following weighted
linear function of the likelihood values to determine an outdoor
obstacle map.

Mobs(x, y) = wp:oHp:o(x, y)− wp:mHp:m(x, y)

+wc:oHc:o(x, y)− wc:mHc:m(x, y) (3)

Then c(x, y) is determined as obstacle cell if the above value is
not less than the outdoor obstacle boundary threshold α, and
movable cell otherwise. Similarly, we introduce the following
likelihood value for indoor cases, and use the indoor obstacle
boundary threshold α̃ to determine if c(x, y) is obstacle or
movable.

M̃obs(x, y) = w̃p:oH̃p:o(x, y)− w̃p:mH̃p:m(x, y) (4)

As we discussed earlier, these likelihood values are dependent
on node mobility and density, GPS positioning errors and other
various factors. Therefore, according to the estimation of their
confidence levels, wp:o, wp:m, w̃p:o, w̃p:m, wc:o and wc:m are
determined online, rather than using fixed values.
The following is the algorithm to determine these weights.

We define W k as a set {wp:o, wp:m, wc:o, wc:m, α} of weights
and threshold at time window k. We also denote the sets⋃

i∈N Lk
i ,

⋃
i∈N P k

i and
⋃

i∈N Ck
i of logs at time k as Lk, P k

and Ck, respectively, and the time-collective sets
⋃

z∈1..k L
z ,⋃

z∈1..k P
z and

⋃
z∈1..k C

z as Lk, Pk and Ck, respectively.
At time window k, the probability that W k is optimal under
given logs Lk, Ck and Pk is represented as a posterior
probability P (W k|Lk,Ck,Pk). We use W k that maximizes
this probability at time window k as the optimal weight set.
Assuming that measurements at different time windows are
independent, the following equation is derived according to
the Bayes’ theorem where η is an coefficient for probability
normalization.

P (W k|Lk,Ck,Pk)

= ηP (Lk, Ck, P k|W k)·P (W k|Lk−1,Ck−1,Pk−1)

= ηP (Lk, Ck, P k|W k)

·
∫
P (W k|W k−1)·P (W k−1|Lk−1,Ck−1,Pk−1)dW k−1 (5)

This indicates that by determining P (Lk, Ck, P k|W k) and
P (W k|W k−1) properly, P (W k|Lk,Ck,Pk) can be deter-
mined using the probability P (W k−1|Lk−1,Ck−1,Pk−1) of
time window k − 1.
Then we address how to determine the values of

P (Lk, Ck, P k|W k) and P (W k|W k−1). Since the amount of
measurements gradually increases as time passes, W k should
take similar values with W k−1. Therefore, as P (W k|W k−1),
we may employ a monotonically decreasing distribution where

Fig. 7. Surface Comparison between LRS logs and Obstacle Maps

mean 0 takes the maximum probability, such as a normal dis-
tribution with mean 0. On the other hand, P (Lk, Ck, P k|W k)
is a probability of obtaining logs Lk, Ck and P k for given
W k. Since Lk and Ck are fully independent, we may derive
P (Lk, P k|W k) and P (Ck, P k|W k) independently and let
their average be the value of P (Lk, Ck, P k|W k).
P (Lk, P k|W k) takes higher probability as the likelihood

Mobs(x, y) by W k and logs Lk and P k are more consistent.
In order to quantify the consistency betweenMobs(x, y) and
Lk, we introduce a set of vectors to represent the character-
istics of the (estimated) surface of obstacles in the obstacle
map (

⋃
x,yMobs(x, y)) and each LRS log Lk

i . Those vectors
(called normal vectors) are orthogonal to the surface of objects
and have different magnitudes. Normal vectors in LRS logs
can be derived in a usual way by estimating the surface
from adjacent scanned points. On the other hand, we have
to consider the likelihood values in the obstacle map. We set
a larger magnitude of normal vector as likelihoodMobs(x, y)
is close to the boundary threshold α or Mobs(x, y) is more
different than its neighboring cells (has a larger gradient). To
represent the above, we multiply a decreasing function of the
difference of likelihood and α with the gradient to determine
the magnitude of normal vectors.
As illustrated in Fig. 7, we obtain the probability

P (Lk, P k|W k) by W k and LRS logs Lk. Then for pair of
vectors ofMobs(x, y) and of Lk at the same position, we take
their inner product, and transform the value of P (Lk, P k|W k)
into the range [0,1] using non-decreasing function such as a
Sigmoid function.
Similarly, P (Ck, P k|W k) takes higher probability as like-

lihoodMobs(x, y) by W k and logs Ck and P k are more con-
sistent. In particular, there are most consistent as the obstacle
likelihood values of cells between two points with successful
beacon transmission are smaller, and as they are larger for
transmission failure. Therefore, we introduce the following
metric LNP = ηNLN−ηPLP where LN and LP are the sums
of the maximum likelihood values in each communication
failure case, and of those in each communication success case,
respectively (ηN and ηP are coefficient to normalize those
values). We translate the value of LNP into the range [0,1] by
a non-decreasing function and use it as P (Ck, P k|W k).
Finally, for indoor cases, we consider W̃ k =

{w̃p:o, w̃p:m, α̃} instead of W k since we do not use
communication logs. The posterior probability P (W̃ k|Lk,Pk)
is determined as follows (P k is obtained by PDR).
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P (W̃ k|Lk,Pk)

= ηP (Lk, P k|W̃ k)

·
∫
P (W̃ k|W̃ k−1)P (W̃ k−1|Lk−1,Pk−1)dW̃ k−1 (6)

D. Anti-aliasing of Surface using LRS logs

At this moment, we have determined the obstacles and their
surface. To eliminate irregularity, we finally apply LRS logs
to reproduce the precise wall measurement. For this purpose,
LRS log placement on the obstacle map is performed by
seeking the corresponding surface in the obstacle map. We
take the same approach as we described in Section IV-C to
quantify the consistency of obstacle map and LRS logs. For
each candidate location qk, we define P (Lk|W k, qk) which
is determined by the inner product of their normal vectors.
Then it is multiplied by position distance and directional error
probability distribution functions, and LRS log placement is
performed if the value exceeds a certain threshold. As for the
position error model, we use the same model as introduced in
Section IV-A and as for the directional error model we assume
a normal distribution.

V. SIMULATION

A. Simulation Settings

We evaluated the performance of our method through sev-
eral simulations using the network simulator QualNet [20].
In the simulations, we employed two target fields each of
which models the office buildings of the Engineering Science
Department (Fig. 8 (a)) and Health Science Department (Fig.
8 (b)) of the Osaka University, respectively. The fields consist
of the area of 10,000m2 to 30,000m2, including both obstacle
areas (i.e., buildings and the regions that cannot be entered by
first responders) and movable areas. The number, density and
shapes of the buildings are different for each case. Nodes are
assumed to move along the paths indicated by the lines in Fig.
8 and randomly choose their direction at each intersection. To
compare the performance with previous method[2], [3] that
supports only outdoor situations, all the nodes move outdoors
in this scenario. The nodes are initially placed on the movable
paths at random, and then move at a speed that follows a
Gaussian distribution with a mean of 1.5 m/sec and a standard
deviation of 0.01. If LRS is available, the node acquires range
information within a fan-shaped region centered at its current
location and orientation. The maximum detectable range and
viewing angle of the LRS are set to RL = 10m and θL = 270◦,
respectively. Since range measurement error of LRS is much
smaller than GPS errors, it is negligible and not taken into
account in this evaluation. Also, we do not discard any LRS
logs, assuming that LRS can keep horizontal position while
normal walking motion. Wireless communication between the
nodes are simulated using Wireless Insite extension [21] of
the QualNet, which is capable of realistic simulations of radio
propagation based on detailed 3D models of the environment.
2.4GHz ISM band is used for the wireless communications,
while transmission power is determined so that the maximum

Fig. 8. Field Maps (Simulation)

communication range is 50m with the two-ray ground re-
flection model [22]. IEEE 802.11b is used for the wireless
communication protocol. The current location of the node is
obtained via GPS every second, where GPS errors follow a
zero-mean Gaussian distribution with a standard deviation of
5 m. The parameters related to map generation are as follows.
We set the cell size to 1m × 1m and assume that the maximum
communication range R = 50m. In calculating likelihood, we
set the standard deviation of the distribution as σg =

√
3m.

Unless otherwise noted, we assume N = 15 and NL = 5,
where N is the number of nodes and NL of them are equipped
with LRS.
Our method assumes the use in rescue operations. In these

case energy consumption is not so big problem, because
operation time is at most around several hours. Precision,
perceptibility and the estimation time is more important.
So, in the above settings, we ran a simulation for 600

seconds and evaluated cell recognition rate (CRR) and path
recognition rate of the generated map. The former metric is
defined by the rate of the number of cells that are correctly
identified whether it is a movable area or an obstacle area. The
latter is defined by the rate of the number of paths that are
not incorrectly obstructed in the map. The simulation results
will be given in the next section.

B. Simulation Results

1) Basic Performance: In Fig. 9, we compare the perfor-
mance of our method to the previous method [2], [3] (without
LRS) in terms of cell recognition rate for the field (b). For
both methods, we can see that the cell recognition rate steeply
grows at the beginning and then converges at a certain level.
The proposed method could achieve the cell recognition rate
of 90% in 200 seconds, while the previous method took 400
seconds to reach the accuracy of 80%. In our setting which
is 15 node randomly choosing their paths, the time from 200
seconds to 300 seconds is necessary so that each path is visited
at least once. Because our method achieves high accuracy in
that time, it is a very efficient method in contrast to previous
method. This improvement would mainly come from the use
of LRS. Since it provides precise shape of the buildings and
their distance, a more accurate map could be built with less
sensor logs. Remember that we let only five nodes out of 15
carry LRSs in this simulation. The result shows that we can
significantly accelerate and refine the map generation if a small
number of nodes hold LRSs.
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Fig. 9. Cell Recognition Rate

Fig. 10. Comparison of Generated Maps

Regarding path recognition capability, we got a high path
recognition rate of 98%. Since finding movable paths is
essential for first responders to build their strategy for rescue
operations, it would be a desirable feature to achieve our goal.
The estimated maps produced by the both methods are

shown in Fig. 10. We can see that improving the cell recog-
nition rate from 80% to 90% really affects the perceptibility
of the resulting maps. The proposed method could reflect the
original map more faithfully.
2) Effectiveness of Adaptive Information Fusion: To show

the effectiveness of our adaptive information fusion mech-
anism, we also compared the performance of our method
to the case that constant weights are used in the final map
fusion. In the compared method, say Empirical, the weights
are determined by the following strategy: “Obstacle” decision
based on communication logs is less credible than other cases
since all the cells between two nodes that cannot communicate
with each other are regarded as obstacle cells even though
most of them may be actually non-obstacle ones. Hence, we
decided to assign less value for wc:o than wp:o, wp:m, and
wp:m. In addition, after extensive simulations with various
patterns of target fields, we found that a simple assumption
of wp:o = wp:m = wc:m = 1 gives relatively good results
for most outdoor cases. Based on the observations above, we
derived an empirical formula that identifies the best wc:o using
average likelihood values and the standard deviation of GPS
errors.
Fig. 11 shows the cell recognition rate for each case with

different node densities, namely N = 5, 15, 30. For most N ,
cell recognition rate of the adaptive approach is higher than
that of Empirical almost throughout the experiment.
Next, we confirm how our adaptive information fusion

algorithm adjusts the confident level of each information
source. Table I lists the final weight values after running a
simulation for 600 seconds; we can see that different weights
are assigned according to the types of target fields and node
densities. When the node density is low, each node can find
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Fig. 11. Contribution of Adaptive Information Fusion: figures (a) and (b)
show the cell recognition rates for the fields (a) and (b) in Fig.8, respectively.

Fig. 12. Contribution of Adaptive Information Fusion (Generated Maps)

fewer neighbors within its communication range, and thus
less communication logs can be collected. Also, reliability of
measurement data from GPS, LRSs, and wireless beaconing
depends on arrangement of buildings, geometrical features and
node mobility, as we have described in the previous sections.
The results show that our algorithm could adopt to the such
different features of collected information.
In Fig. 12, we show the estimated maps by Empirical and

our adaptive approach as N = 5. As seen, the proposed
method could reflect the shape of the building much more
accurately, since appropriate weights are assigned according to
the environment. In this figure, we also compare the resulting
maps with that of the previous work. For the previous method
with N = 5, the cells in the movable area at the top of the
field are misidentified as obstacle cells. This is because few
nodes passed through the region during the experiment time,
and thus it could not collect sufficient amount of GPS and
communication logs. In contrast, the proposed method could
generate a complete map under the same conditions, since
LRSs could complement the insufficient measurement data.
3) Impact of Node Density: In Fig. 11, we can also see

that the accuracy converges more quickly as N is larger. It
is natural since a large amount of GPS and communication
logs can be collected when many nodes participate in the map
generation, which means the logs can fastly cover all over the
field. After sufficient time has elapsed, the cell recognition
rate converges to the similar value for every case since the
“coverage” of LRS logs gets higher.
4) Contribution of LRS Logs to the Perceptibility: Fig. 13

shows the effect of our surface adjustment algorithm. In the
map (a), we can see that the corners of each building are
rounded due to uncertainty near the boundaries. In contrast,
the correct shape of the buildings are reflected in the map (b)
after applying the surface adjustment process based on LRS
logs; even a concavity of the building (at the bottom) can
be clearly seen in the map. Thus, our adjustment mechanism
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TABLE I
ADJUSTED WEIGHTS FOR INFOMATION FUSION

N wp:o wp:m wc:o wc:m α

5 2.0 2.0 7.0 7.0 -0.02
field (a) 15 3.0 3.0 5.0 3.0 -0.02

30 3.0 3.0 7.0 3.0 -0.02
5 3.0 3.0 7.0 7.0 -0.02

field (b) 15 3.0 3.0 5.0 3.0 -0.02
30 5.0 5.0 5.0 3.0 -0.02

Fig. 13. Efficacy of Surface Adjustment

successfully enhances the perceptibility of the estimated maps.
5) Performance in Emergency Scenario: In previous sec-

tion, we assume that nodes randomly choose their directions.
In this section, we use the mobility which models realistic
rescue operations. Usually, if there are many injured people,
first responders set up the emergency relief place, and they per-
form search and conveyance of the injured people.We model
such activities by two types of nodes. The first type is called
”exploration node” which moves around the entire region to
search injured people and grasp the spot. Another type is called
”conveyance node” which commutes between the relief place
and any point in the region to convey injured people. We
perform the simulation using field (a) and we assume that
left lower intersection is the relief place. Exploration nodes
start from the relief place and visit all paths in the region.
Conveyance nodes commute between the relief place and other
intersections which are randomly selected whenever they come
back to the relief place. We set N = 15 and NL = 5.
The number of exploration nodes is 10 and the number of
conveyance nodes is 5.
Fig.14 shows the cell recognition rate for each case in which

exploration nodes have LRSs or conveyance nodes have LRSs.
As a result of using this mobility, the cell recognition rate
could reach the same level as using random path choosing
mobility. Furthermore, convergence of the cell recognition rate
is quick, because exploration nodes go around the entire region
efficiently.

VI. EVALUATION WITH REAL LRS LOGS
A. Evaluation Methodology
In the previous section, we employed the Wireless Insight

module to generate communication logs in a realistic fashion.
On the other hand, we assumed a simple measurement model
for LRS where ranging errors and the effect of its slight
vibration due to walking motion are not taken into account.
To confirm the performance in more realistic environment and
validate the assumptions in our simulations, we also tried
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Fig. 15. Field map (IST Dept.)

generating a map using real LRS logs. In this experiment,
we consider both indoor and outdoor cases to show how they
collaborate with.
The sensor logs were collected through the following

experiment being conducted around the office buildings of
Information Science and Technology Department. The field
map is shown in Fig. 15, where the movable paths are overlaid.
Note that the paths go through not only outdoor but also indoor
areas. In the same way as the previous section, node mobility
patterns were randomly generated along the paths. Following
the generated random mobility patterns, an examinee walked
around the field with an LRS for 600 seconds. While the
experiment, a Hokuyo UTM-30LX Laser [4] was attached to
his jacket as shown in Fig. 2. Although it has the maximum
detectable range of 30m, we discarded range measurement logs
that exceeds 10m due to the limitation on the pose estimation
accuracy of LRS (given by inertial sensors). After conducting
such experiments 3 times, we collected three sequences of real
LRS data.
Using the real sensor logs, we ran simulation with similar

settings as those in Section V. Here, we set N = 10 and
NL = 3, and applied the collected range measurement logs
to the three LRS-equipped nodes. Since we can correct PDR
traces by matching them with LRS logs, we assume that the
PDR error follows a zero-mean Gaussian distribution with a
standard deviation of 0.2m. Other simulation settings are the
same as those of Section V.

B. Results
The outer shape of the buildings is estimated by the logs

from the nodes outdoors, while passages inside the building are
identified using those indoors. Then, the two maps are merged
into a seamless indoor/outdoor map as shown in Fig. 16. We
can see that both outer shape of the building and passages
indoors are successfully reflected to the final map.
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Fig. 16. Generated Map (Overlaid)

In general, indoor passages are much narrower than roads
and pathways outdoors, and thus hard to be detected. LRSs
are really suitable for such situations; they provide more
reliable measurements indoors since the floor is usually flat
within a building. A challenge is to handle the large variance
in the features of collected sensor logs according to the
situations. GPS logs cannot be obtained indoors, while LRS
logs might be deteriorated outdoors due to ups and downs
of the field. Also, wireless communication logs can be highly
affected by multipath effect. The result shows that our adaptive
information fusion mechanism copes with this problem and
enables a sufficient mapping accuracy and path recognition
capability in both indoor and outdoor.

VII. CONCLUSION

In this paper, we have proposed a novel map estimation
method to support rescue operations by first responders. Com-
bining information from multiple sources (i.e., GPS, PDR,
WiFi, and LRSs) with different confident levels, it quickly
generates an accurate map of the whole disaster site. Our
simulation results show that the proposed method could gen-
erate a map of a 140m × 170m field in 200 seconds with
accuracy of 90%, while the previous work took 400 seconds to
achieve accuracy of 80%. We have also showed that our adap-
tive information fusion approach helps to enhance mapping
precision by autonomously adjusting confident levels of the
information sources according to situations. Finally, we have
conducted a simulation based on real sensor data collected
through a field experiment, and confirmed that our method
could successfully reflect the outer shape of the building as
well as indoor pathways to the generated map.
For part of our future work, we plan to further refine our

algorithms to enhance precision and perceptibility of generated
maps by analyzing sensing errors in more detail. Also, we are
seeking effective collaboration with other situation-awareness
technology such as noxious-gas detection and estimation of
pedestrian flows. Overlaying the precise estimated map with
such environmental information could greatly support efficient
rescue activities.
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