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Abstract

We consider the derivation of a protocol specification from a service specification written in Predicate/Transition-nets
(Pr/T-nets). The service specification describes the global behavior of a system and includes the allocation of the Pr/T-net
places to N distributed sites. The paper presents a new algorithm for deriving a protocol specification that defines the
behavior of N communicating entities that execute on the N sites and coordinate their actions in order to conform to
the global behavior defined by the service specification. Our algorithm decomposes each transition of the service specifi-
cation into a set of communicating Pr/T-subnets running on the N entities. Moreover, for efficiently controlling the conflict
for shared resources, we present a timestamp-based contention control algorithm and incorporate it into the deriva-
tion algorithm. A tool has been developed that implements our algorithm and works together with other existing
tools for the graphical representation of the service and derived protocol specifications. Two application examples are
discussed.
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1. Introduction

Synthesis methods have been used to derive the
specification of a set of application components
running in a distributed system of networked com-
puters (hereafter called protocol specification) auto-
matically from a given specification of services to
be provided by the distributed application to
its users (called service specification). The service
.
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specification is written in the form of a centralized
model, and does not contain any message exchanges
between different physical locations. However, the
definition of the behavior of the application compo-
nents, called protocol entities (PEs), includes the
message exchanges between these entities. Protocol
synthesis methods have been used to specify and
derive such complex message exchanges automati-
cally in order to reduce the design costs and errors
that may occur when manual methods are used.

Many synthesis methods have been proposed in
the literature. The methods use different computa-
tional models as service definition languages. For
example, the methods presented in [1–3] use CCS/
LOTOS models, the methods in [4–8] use FSM/
EFSM models and the methods in [9–16] use Petri
net models. Similar methods may also be used for
deriving distributed testers for distributed applica-
tions [17] and for deriving specifications of real-time
systems [18–20]. In this paper we consider service
and protocol specifications written in high-level
Petri nets. These are extended Petri nets where
tokens have values and the firability of transitions
may depend on those values. Popular versions of
high-level Petri nets are predicate/transition nets
(Pr/T-nets) [21,22] and coloured Petri nets (CPN)
[23]. These models have enough modeling power,
analytical power and tool support (such as CPN
Tools [24]) to specify, verify and analyze large and
practical software systems [25], communication
protocols [26,27], control systems and so on [23,28].

In this paper, we propose a new algorithm for the
derivation of a protocol specification in Pr/T-nets,
which is the specification of N communicating enti-
ties (N is given), from a given service specification in
Pr/T-nets and an allocation of the places of the ser-
vice specification to the N entities. Our algorithm
decomposes each transition of the service specifica-
tion into a set of communicating Pr/T-subnets
running on the N entities. Moreover, in order to
improve the efficiency of controlling the conflict
between different transitions over shared resources,
we present a timestamp-based contention control
algorithm and incorporate it into the derivation
algorithm. A tool has been developed that includes
our derivation algorithm and works together with
other existing tools for the representation of the ser-
vice and the derived protocol specifications. As
application examples we discuss the application of
our synthesis method to a distributed media trans-
coding service on overlay networks and to a distrib-
uted software development process [29].
Our approach is very powerful in the sense that
general Pr/T-nets are allowed to be used for specify-
ing services. Such Pr/T-nets may include complex
conflict structures between transitions that require
read and/or write access to shared resources in the
form of tokens with values stored at shared places.
Since these resources may reside on different sites
and the transitions should be initiated when all
required resources are available, we have to deal
with this complex problem of distributed synchroni-
zation for the different transitions involving the pro-
tocol entities on the different sites. We first present a
basic transition execution protocol where a transi-
tion is initiated by its ‘‘primary site’’ without having
full knowledge about the available resources; the
transition is then canceled whenever there appears
to be some conflict or deadlock possibility.

Some existing synthesis methods also allow to
treat variables (parameters) in their modeling lan-
guages as for instance a CCS-based model with
I/O parameters [1] and Petri nets with external vari-
ables [9,15]. However, since these existing methods
mainly focus on value exchanges between entities,
only simple control flows are allowed; the combina-
tion of choices and synchronization involving
parameters, which often represents resource con-
flict, is not treated by those methods. Therefore,
the class of acceptable service specifications has
been considerably extended by the approach
described in this paper. As far as we know, no pre-
vious paper has presented synthesis approaches for
general Pr/T-nets.

We note that the basic idea of this paper was pre-
sented in [30]. Here we extend that work in several
ways. First, we enhance the derivation algorithm
by including a new derivation policy. Using a few
additional messages, this policy prevents large size
resources from being exchanged between entities.
Second, we include a detailed timestamp-based con-
tention control algorithm for efficiently controlling
conflict for shared resources. Third, we developed
a tool that includes our derivation algorithm and
can interwork with other Petri net tools. Fourth,
we provide arguments for the validity of our method
and discuss the application of the method to two
realistic examples.

This paper is organized as follows. Section 2
includes the definition of Pr/T-nets and provides
examples of service and protocol specifications writ-
ten in this notation. In Section 3 we present our der-
ivation algorithm and in Section 4 we enhance this
algorithm by incorporating a timestamp-based
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contention control algorithm. In Section 5 we
describe two application examples and in Section 6
we conclude the paper.

2. Service and protocol specifications in Pr/T-nets

2.1. Predicate/transition-nets

We use Predicate/Transition-nets (Pr/T-nets)
[21] for representing service and protocol specifica-
tions of target systems. In Petri nets, a place
(denoted as a circle) represents a state or data of
a system, and a transition (denoted as a rectangle)
represents a task (or job) of the system. A place
and a transition may be connected by a directed
edge called an arc (denoted by an arrow). Tokens
(denoted as black dots) in places represent the cur-
rent state of the system, and execution (‘‘firing’’ in
the Petri net terminology) of a transition may con-
sume/produce tokens from/to the places connected
to the transition.

Pr/T-nets are an extended form of Petri nets.
Intuitively, in Pr/T-nets, each incoming arc to a
transition t from a place p has a label of the form
of k1X1k2X2 . . . called an arc label where ki is a posi-
tive integer, Xi is a n-tuple of variables like
hx1, x2, . . . ,xni and n is an arbitrary non-negative
integer assigned to place p. Place p may have tokens,
each of which is a n-tuple of values Ci = hc1, c2,
. . . ,cni. A set of tokens which can be assigned to
an incoming arc to transition t is called an assign-

able set of the arc. Moreover, a transition t may
be associated with a logical formula of variables
from the labels of incoming arcs of t, called a condi-

tion. Conditions are depicted inside transitions
p1

2<x, y>

p2 p3

p4 p5

<z> <w>

 x=z /\ y=w

 2 

2<"a", "b">
3<"a", "c">

 t 

<"a">
<"b">
<"c">

<x@z, y, z>

Fig. 1. An example of Pr/T-nets: (a) bef
rectangles. A transition t may fire iff there exists
an assignable set in each input place of t and the
assignment of values to variables by the assignable
set satisfies the condition of t. Also, each outgoing
arc from transition t to a place p 0 has a label of
the form of k01Y 1k02Y 2 . . . where k0i is a positive inte-
ger and Yi is a n 0-tuple of values, variables on the
incoming arc labels of t or functions over the vari-
ables. Therefore, if t fires, the values of the labels
on the outgoing arcs from t are determined by the
assigned input tokens according to the output arc
labels. New sets of tokens are generated and put
into the output places of t.

Fig. 1 includes an example of Pr/T-net. In
Fig. 1(a), the incoming arc to t from p1, (p1, t), has
the label 2hx, yi where x and y are variables. This
means that two tokens each consisting of a pair of
values are necessary in place p1 for the firing of tran-
sition t. Here, since the following assignable sets
2h‘‘a’’, ‘‘c’’i in p1 (‘‘a’’ and ‘‘c’’ are strings here),
h‘‘a’’i and h‘‘c’’i in p2 and two tokens without values
in p3 satisfy the condition of t, (x = z ^ y = w), t can
fire using these sets. Note that tokens without values
are represented as black dots in the following fig-
ures. After the firing of t, new tokens are generated
to the output places p4 and p5 using those token
values. The marking after the firing of t is shown
in Fig. 1(b). Note that ‘‘@’’ is a concatenation func-
tion of two strings. Thus a tuple of strings ‘‘aa’’, ‘‘c’’
and ‘‘a’’ is generated to p4. The arc label ‘‘1’’, which
means the delivery of one token without values, is
omitted in the following figures.

In the following we formally define the Pr/T-nets
model. For related detailed definition, the reader
may refer to [21,22].
p1 p2 p3

p4 p5

 t 

<x@z, y, z>

2<x, y> <z> <w>
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 2 

ore firing of t, (b) after firing of t.
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Definition 1. N = (P, T, F, U, L, C, m0) is called a
Predicate/Transition-net (Pr/T-net) iff

1. (P, T, F) is a Petri net where P, T and F � (P · T)
[ (T · P) are sets of places, transitions and arcs,
respectively.

2. U is a finite set of values, variables and operators
over the values and variables, for example, U =
{‘‘a’’, ‘‘b’’, . . . ;x, y, . . . ; > , = , _ , . . . }.

3. L is a set of arc labeling functions. Each function
assigns an arc label to either an incoming arc
(p, t) to a transition t or an outgoing arc (t 0, p 0)
from a transition t 0. The arc label assigned to
(p, t) has a form like k1X1 . . . kmXm (m P 0)
where ki is a positive integer and Xi is a n-tuple
of variables. The arc label assigned to (t 0, p 0)
has a form like k01Y 1 . . . k0m0Y m0 (m 0 P 0) where k0i
is a positive integer and Yi is a n 0-tuple of values,
the variables on the labels of incoming arcs to t 0

and functions in U over the variables.
4. C is a set of transition labeling functions. Each

function assigns to a transition t a logical for-
mula over the values and variables in U. This is
called a condition. Variables in a condition of
transition t are from the variables on the labels
of incoming arcs to t.

5. m0 is the initial marking of N which assigns to
each place p n-tuples of values. Each tuple of val-
ues is called a token.

Hereafter •t and t• denote the sets of input and
output places of t, respectively. A transition t may
fire at a marking m iff for each place p 2 •t there
exists an assignment bp that assigns to L(p, t) (the
label of arc (p, t)) a subset of m(p) (tokens in place
p) and those assignments ¨p2•tbp make the value
of C(t) be true. If t fires, for each output place
p 0 2 t•, the set of tokens (the value of L(t, p 0) deter-
mined by the assignments ¨p2•tbp) is generated to
p 0. If the labels of more than one incoming arc of
t contain variables with the identical names, the val-
ues assigned by bp to these variables must be equal.

2.2. Service specification

A service specification is a description of services
to be provided to the service users of a distributed
system. Fig. 2(a) shows an example service specifica-
tion. For readability, we use a very simple example.
The system works as follows. At the initial marking,
transition tu can fire, since there exists an assignable
set in each input place of tu and these assignable sets
satisfy the condition of tu. For example, h‘‘a’’i in p1,
h‘‘b’’i in p2, h‘‘c’’i in p3 and h‘‘d’’i in p4 are such
assignable sets that satisfy the condition, since char-
acter values ‘‘a’’, ‘‘b’’, ‘‘c’’ and ‘‘d’’ are assigned to
variables x, y, z and w, respectively, and the condi-
tion ‘‘x < z’’ under those assignments becomes
‘‘a’’ < ‘‘c’’ (this is true in the alphabetical order).
Let us assume that these tokens are used for the
firing of tu. If tu fires, these tokens are removed
and three tokens h‘‘a’’i, h‘‘b’’i and h‘‘c’’i are gener-
ated to the output place p4, and a new token h‘‘a’’,
‘‘b’’,‘‘d’’i is generated to p5.

2.3. Protocol specification

A protocol specification is a lower level specifica-
tion of the distributed system that consists of N enti-
ties (distributed components) communicating with
each other. These entities are called sites in this
paper. In distributed systems, computer resources
(such as databases), which are usually represented
as places with tokens in Pr/T-nets, are usually dis-
tributed over multiple sites. In describing a service
specification, developers are not required to be
aware of the location of the places. However, in a
protocol specification, these sites need to coopera-
tively collect/distribute tokens from/to these places
to execute the transition. Thus, a protocol specifica-
tion is a set of specifications of N sites and contains
communicating behavior between the sites.

Fig. 2(b) shows a protocol specification, which is
a distributed specification of the service in Fig. 2(a)
over three sites. In protocol specifications, we intro-
duce places called communication places for model-
ing asynchronous and reliable communication
channels, represented by dotted circles. They are
like ‘‘fusion places’’ in coloured Petri nets [23]. We
assume that two communication places with a com-
mon name ‘‘Xu.ij’’ where X = a, b or c (explained in
the next section) in the Pr/T-nets of two different
sites i and j represent the end points (send and
receive buffers) of a reliable communication channel
from site i to site j. If a token is put on ‘‘Xu.ij’’ at site
i, the token is eventually removed and put onto
‘‘Xu.ij’’ at site j. Note that u means that these com-
munication places are used with respect to the exe-
cution of transition tu of the service specification.
In the following figures, communication places are
represented as dotted circles with their names inside.
Arcs without labels carry tokens without values.
Also, we use ‘‘!’’ and ‘‘!=’’ to represent logical
negation ‘‘:’’ and the operator ‘‘5’’, respectively.
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Fig. 2. (a) Service specification, (b) protocol specification, (c) timing chart.
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Moreover, in protocol specifications we introduce a
reserved symbol denoted by /, used in tokens for
notification purpose only.

In our derivation algorithm, we assume that an
allocation of the places of the service specification
to sites is given. In the protocol specification of
Fig. 2(b), places p1, p2 and p5 are located to site A,
p3 to site B, and p4 to site C. Under this allocation,
our derivation algorithm determines how the values
in these places and other notification messages are
exchanged to simulate the behavior of the service
specification.
In the derivation algorithm, one of the sites that
have input places of tu starts the execution of tu. In
Fig. 2(b), this is site C. It starts the execution by
firing the ‘‘start’’ transition ‘‘tu.start’’, which sends
an assignable set to site A carrying the values
hn, wi via communication place ‘‘au.ca’’ and the
value hni via communication place ‘‘au.cb’’ to site
B. We note that the variable n carries a non-nega-
tive integer and is used to identify each execution
of transition t since several executions of t may fire
simultaneously with different assignable sets. For
this purpose, we introduce a place called p.counter



Table 1
Semantics of transitions in protocol specifications

Name Semantics

t.start Initiates the execution of transition t by taking an
assignable set of tokens from each input place of t

at the site, and sends them to the other sites
t.read (Following t.start,) takes an assignable set of

tokens from each input place of t at the site and
sends them to the other sites

t.cancel (Following t.start,) is executed if assignable sets of
tokens are not available for all input places at the
site. It sends tokens with symbol / (cancellation
tokens) to the other sites to let them know that an
input place has no assignable set

t.commit Commits the execution of t

t.abort1 Aborts the execution of t due to the lack of
assignable sets of tokens on the other sites or the
condition of t. The assignable sets of tokens taken
from the input places are returned

t.abort2 Aborts the execution of t due to the lack of tokens
on the site itself
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attached to tu.start that generates a unique integer
for each firing of tu.start. Thus the variable n is
attached to all tuples of values used in the execu-
tion of t. If site A has assignable sets in the input
places p1 and p2 and if it receives the value hn, wi
from site C, it fires the ‘‘read’’ transition ‘‘tu.read’’,
which sends the values hn, xi to site B and the val-
ues hn, x, yi to site C via communication places
‘‘bu.ab’’ and ‘‘bu.ac’’, respectively. If either p1 or p2

does not have an assignable set, the ‘‘cancel’’ tran-
sition ‘‘tu.cancel’’ will eventually fire on site A and
will send cancellation tokens (tokens with /) to
sites B and C via communication places ‘‘bu.ab’’
and ‘‘bu.ac’’, respectively. The firing of the cancel
transition at site A means that the execution of tu

will be aborted due to the lack of assignable sets
in input places p1 and p2 of tu.2 Similarly, site B

takes an assignable set from p3 and sends the val-
ues hn, zi to both sites A and C. Consequently,
every site can examine (i) whether all the input
places of tu have assignable sets or not, and (ii)
whether the assignable sets satisfy the condition
of tu or not. If (i) and (ii) are true, the ‘‘commit’’
transition ‘‘tu.commit’’ on each site will eventually
fire and new tokens are generated on sites A and
C for the output places p5 and p4, respectively
(i.e. the execution of tu has been committed). If
2 In the Petri net formalism, tu.cancel may fire even when tu.read

can fire. In a practical aspect, it can be easily avoided by
prioritizing the firing of tu.read over that of tu.cancel.
either (i) or (ii) does not hold, the ‘‘abort’’ transi-
tion tu.abort1 or tu.abort2 on each site fires. tu.
abort1 fires in case that an input place at an other
site does not have an assignable set or (ii) does not
hold, and tu.abort2 fires in case that an input place
at the site itself does have an assignable set. If tu.
abort1 fires, the tokens read from the input places
are returned to the input places, i.e., the execution
of tu is aborted. These transitions are listed in
Table 1. A possible time sequence diagram is
shown in Fig. 2(c).

3. Derivation algorithm

3.1. Overview

Given a service specification Sspec written in the
form of a Pr/T-net, the number N of sites, and an
allocation of each place of the service specification
to one of the N sites, our derivation algorithm
derives a protocol specification Pspec, which con-
sists of a set of specifications for the N sites. The
derivation algorithm is presented in Section 3.3,
and in Appendix B we comment on its validity.

The derivation of the protocol specification pro-
ceeds for each transition of the service specification,
independently of the other service transitions. For
each given transition t of the service specification,
the derivation algorithm creates a Transition
Execution (TE) protocol which is explained in the
next subsection. In fact, an example of the TE pro-
tocol was already discussed in Section 2.3 for the
example of Fig. 2. The TE protocol for a given ser-
vice transition consists of a partial Petri-net behav-
ior for each site i. For the protocol specification, the
behavior specification for site i is obtained by putt-
ing together the partial Petri-net behaviors (for site
i) obtained from all the transitions of the service
specification. The resulting structure of the behav-
ior specification for site i is similar to the structure
that links the different transitions in the service
specification.

3.2. Principle of the transition execution protocol

Depending on a given allocation of places, for
each transition t of Sspec, we identify the set of sites
called reading sites which have at least one input
place of t, and also the set of sites called writing sites

which have at least one output place of t. Then we
select one of the reading sites as the primary site.
This is summarized in Table 2.



Table 2
The role of sites in transition execution protocol

Reading site is a site which has at least one input place of t

Primary site is a site selected from the reading sites of t.
It starts the execution of this transition

Writing site is a site which has at least one output place of t
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In the following we describe the TE protocol:

1. The primary site (say site i) starts the execution of
t by taking assignable sets from the input places
of t allocated to site i. Then to the other reading
and writing sites, it sends tokens (carried via a
communication places) with the values included
in the assignable sets. These values are used to
examine the condition of t or for generating
new tokens. Thus some tokens may include no
value if a reading or writing site does not need
these values.

2. When a reading site (say site j) receives token(s)
from the primary site, site j selects an assignable
set from each input place of t allocated to site j if
such a set exists. Then to the other reading and
writing sites, site j sends tokens (carried via b
communication places) with the values included
in the assignable sets. These values are used to
examine the condition of t or for generating
new tokens. Thus some tokens may include no
value if a reading or writing site does not need
these values. If an assignable set does not exist,
site j sends tokens with null values /, called ‘‘can-
cellation tokens’’. The reading and writing sites
examine (i) whether all the input places of t have
assignable sets or not, and (ii) whether the assign-
able sets satisfy the condition of t. The first con-
dition can be checked by checking if the received
tokens include / or not, and the second
condition can be checked by using the included
values in the received tokens. If the conditions
(i) and (ii) are true, the reading sites discard the
assignable sets and the writing sites generate
new tokens to the output places of t allocated
to them. Otherwise, the execution of t is aborted.
In this case, the assignable sets which have been
acquired by the reading sites are returned to the
original input places.

In order to prevent deadlocks due to waiting for
tokens where an assignable set does not exist in an
input place of a transition, we have introduced a
mechanism to cancel and abort the execution of
the transition when one of the input places has no
assignable set. For performance reasons, it is clear
that one would like to avoid the cancellation of a
transition as much as possible. In the case of free-
choice Petri nets, the choice between alternatives
can be performed by a single place which is an input
place to all the alternative transitions. In this case,
we could choose as primary site of all those transi-
tions the site to which that place is allocated. In this
case the cancel transition in the protocol specifica-
tion does not need to be implemented, thus simpli-
fying the protocol specification and avoiding
transaction cancellation. For the case of general
Petri nets, a distributed contention control algo-
rithm for partly avoiding transition cancellations
is described in Section 4.

3.3. Derivation algorithm in detail

Here we present the protocol derivation algo-
rithm which is based on the TE protocol described
in Section 3.2. Hereafter, for a set P of places, let
ALCi(P) denote the set of places in P allocated to
site i. We note that [kALCk(P) = P and "i, j

ALCi(P) \ ALCj(P) = ;. For the set P of places of
Sspec and for each site i, the set ALCi(P) of places
allocated to site i is given.

For a given transition t of the service specifica-
tion, let RS(t) and WS(t) denote the sets of reading
sites and writing sites of transition t, respectively.
They are uniquely determined by the given alloca-
tion. Let ps(t) denote the primary site of t. We
may select any reading site as the primary site.
Also, let Vini(t) denote the set of variables each of
which is used in the label of an arc (p, t)
(p 2 ALCi(•t)), Vouti(t) denote the set of variables
each of which is used in the label of an arc (t, p 0)
(p 0 2 ALCi(t•)), and Vcond(t) denote the set of vari-
ables used in the condition of t. We note that, for
simplicity, in our derivation algorithm, for each
transition t and any pair of two reading sites i

and j of t we assume Vini(t) \ Vinj(t) = ;. If this is
not true, we may rename variables with identical
names differently and add a condition to t that indi-
cates that the values of these renamed variables
must be equal to satisfy the assumption. We also
assume that the service specification does not have
tokens without any values. If this is not true, we
may give a dummy value to such tokens to satisfy
this assumption. Therefore, these assumptions are
not essential. A summary of all notations used in
the algorithm is given in Table 3.



Table 3
Notations used in derivation algorithm

ALCi(P) the set of places contained in a given set P of places
and allocated to site i

ps(t) the primary site of t

RS(t) the set of reading sites of t, including the primary site
WS(t) the set of writing sites of t

Vini(t) the set of variables in the label of an arc (p, t) where
p 2 ALCi(•t)

Vouti(t) the set of variables in the label of an arc (t, p0) where
p0 2 ALCi(t•)

Vcond(t) the set of variables in the condition of t

3 As explained in Section 2.3, formally we denote a communi-
cation place by Xu.ij (X = a, b or c) where u is the index of the
target transition tu. However, the target transition is denoted as t

in this algorithm description. Thus we use the simplified notation
Xij.
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For demonstrating the different steps of the algo-
rithm, we use Sspec in Fig. 2(a) (it is shown in
Fig. 3(a) again). Let us assume that there are three
sites and places p1, p2 and p5 are allocated to site
A, place p3 is allocated to site B, and place p4 to site
C. This allocation of places is shown at the name of
each place in Fig. 3(a). Under this allocation,
RS(t) = {A, B, C} and WS(t) = {A, C}. We have
chosen ps(t) = C.

[The Derivation Algorithm]
For simplicity of notations, we let i denote ps(t)

in this algorithm description.

3.3.1. Step A: decompose transitions

Based on the given allocation of places to sites,
this step (Step A) transforms every transition t of
Sspec into a set of distributed transitions. As a
result, this step builds a basic structure of Pspec,
whose token values and transition conditions are
determined later in Steps C and D. t.read (or t.start)
transitions are introduced to take assignable sets
from the input places of t at the reading sites as well
as to receive assignable sets at the reading and writ-
ing sites sent from the primary site. t.commit transi-
tions are introduced to check the condition of t and
generate tokens to the output places of t at the read-
ing and writing sites. Also, by adding certain other
places, it is guaranteed that (1) t.start transition is
executed first, (2) each t.read transition is executed
after the t.start transition, and (3) each t.commit

transition is executed after all t.read transitions at
the reading sites. The result of applying Step A to
our example is shown in Fig. 3(b).

For a formal description of the algorithm, we
introduce the net transformation rules shown in
Fig. 4(a), (b) and (c). Rule 1 splits a synchronization
transition into m (m > 1) independent transitions
where each input or output place is attached to
one of these transitions. As a result, this operation
removes synchronization. Rule 2 inserts a new tran-
sition and a new place before or after a transition.
Rule 3 inserts a place to create an execution order
between two independent transitions.

(A-1) Decompose t into t.commit transitions: For
each reading or writing site k, this step gener-
ates t.commitk which has the input and out-
put places of t allocated to site k. Formally,
– apply Rule 1 to divide each transition t of

Sspec into a set of t.commitk transitions
such that for each k 2 RS(t) [WS(t) a
t.commitk transition is created for site k.
Then attach the places in ALCk(•t) [
ALCk(t•) to t.commitk.

(A-2) Add t.start and t.read transitions and p.inner
places: For each t.commitk, this step inserts
a transition t.readk (or t.start) and a place
p.innerk. Formally,
– for each t.commitk (k 5 i), apply Rule 2 to

insert a transition t.readk and a place
p.innerk before t.commitk, and

– for t.commiti, apply Rule 2 to insert a tran-
sition t.start and a place p.inneri before
t.commiti.

We note that t.read transitions at writing
sites are needed to receive tokens via a-com-
munication places introduced in step (A-3).

(A-3) Add communication places: This step intro-
duces communication places between the
above generated transitions. Formally,
– for each pair of t.start and t.readj, apply

Rule 3 to insert a communication place aij
3

– for each pair of t.readj and t.commitk

(j 2 RS(t), j 5 i and j 5 k), apply Rule 3
to insert a communication place bjk.

3.3.2. Step B: introduce cancellation and

identification mechanisms

The second step (Step B) adds cancellation and
identification mechanism for the consistent execu-
tion of distributed transitions. t.cancel transitions
are introduced to check the availability of assign-
able set in the input places of t and t.abort1 and
t.abort2 transitions are introduced to actually abort
the execution of t. A p.counter place is introduced to
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Fig. 3. Derivation algorithm snapshots.
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distinguish simultaneous executions of t. The result
of applying Step B to our example is shown in
Fig. 3(c).

For the formal description of Step B, we use the
net transformation rules shown in Fig. 4(d), (e) and
(f). Rule 4 adds a transition that removes tokens from
places and generates tokens to different places. Rule 5
adds a sink transition to discard tokens in places.
Rule 6 adds a place to a transition to form a self-loop.

(B-1) Add t.cancel transitions: For each t.readj

(j 2 RS(t) and j 5 i), a transition t.cancelj is
introduced to generate cancellation tokens
when some input places at site j have no
assignable set. Formally,
– for each t.readj (j 2 RS(t) and j 5 i), apply
Rule 4 to add a transition t.cancelj where •
t.cancelj = {aij} and t.cancelj• = t.readj•.

(B-2) Add t.abort1 transitions: For each t.commitk,
a transition t.abort1k is introduced to abort
the execution of t, and to return the tokens
to the original input places at site k if site k

is a reading site. Formally,
– for each t.commitk, apply Rule 4 to add a

transition t.abort1k where •t.abort1k =
•t.commitk and t.abort1k• = ALCk(•t).
(B-3) Add t.abort2 transitions: For each t.commitk

(k 2 RS(t) and k 5 i), a transition t.abort2k

is introduced to abort the execution of t.
Unlike t.abort1k, t.abort2k fires if no assign-



Fig. 4. Transformation rules used in steps A and B of derivation algorithm.
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able set is taken from the places at site k (thus
site k does not need to return the assignable
set). Formally,
– for each t.commitk (k 2 RS(t) and k 5 i),

apply Rule 5 to add a transition t.abort2k

where •t.abort2k = •t.commitk.
(B-4) Add p.counter place: This place is introduced

to distinguish concurrent executions of transi-
tion t with different assignable sets. Formally,
– for t.start, apply Rule 6 to add a place

p.counter with a token h0i inside.

3.3.3. Step C: set arc labels

This step sets the arc labels attached to a and b
communication places, p.counter place and p.inner

places. This step determines which types of values
are exchanged between sites.

(C-1) Set arc labels of p.counter place: p.counter is
used to set a unique identifier to every execu-
tion of t. For this purpose, in Step (B-4),
p.counter is assigned a token with an integer,
which is initially zero. This value increases
for each execution of t.start. Therefore, hni
is set as the label of (p.counter, t.start) and
hn + 1i is set as the label of (t.start,
p.counter).

(C-2) Determine values carried by a communica-

tion places: This step lets each aij carry
the values in the assignable set obtained
at site i to site j that needs these values
to examine the condition of the transition
or to generate tokens for the output places
of t. Formally,
– for each aij, set a tuple of the variable n and

all the variables in Vini(t) \ (Voutj(t) [
Vcond(t))nVinj(t) as the labels of the arcs
(t.start, aij), (aij, t.readj) and (aij, t.cancelj).

(C-3) Determine values carried by b communication

places: This step lets each bjk carry the values
in the assignable set obtained at site j, to site
k which needs the values to examine the con-
dition or to generate tokens for the output
places of t. We note that bjk carries a cancel-
lation token to site k in case that t.cancelj fires
at site j. Formally,
– for each bjk, set a tuple of the variable n

and the variables in Vinj(t) \ (Voutk(t) [
Vcond(t))nVink(t) as the labels of the arcs
(t.readj, bjk), (bjk, t.commitk), (bjk, t.abort1k)
and (bjk, t.abort2k), and

– set a tuple of the variable n and m /’s as
the label of (t.cancelj, bjk) where m =
jVinj(t) \ (Voutk(t) [ Vcond(t))nVink(t)j.

(C-4) Determine values kept by p.inner places: This
step lets each p.innerj keep the values in the
assignable set obtained at site j itself and
the values received through aij. We note that
p.innerj keeps a cancellation token in case
that t.cancelj fires at site j. Formally,
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– for each p.innerj (j 5 i), set the tuple of the
variable n and all the variables in Vini(t) \
(Voutj(t) [ Vcond(t)) [ Vinj(t) as the labels
of the arcs (t.readj, p.innerj), (p.innerj, t.
commitj), (p.innerj, t.abort1j) and (p.innerj,
t.abort2j),

– for p.inneri, set a tuple of the variable n and
all the variables in Vini(t) as the labels of
the arcs (t.start, p.inneri), (p.inneri, t.com-

miti) and (p.inneri, t.abort1i), and
– set a tuple of the variable n and m /’s as

the label of the arc (t.cancelj, p.innerj)
where m = jVini(t) \ (Voutj(t) [ Vcond(t))
[ Vinj(t)j.

(C-5) Determine values returned by t.abort1 transi-

tions: This step determines when t.abort1k is
executed the values to be returned by
t.abort1k to the input places of t allocated
to site k. Formally,
– for each (t.abort1k, p) (p 2 ALCk(•t)), set

its label as that of (p, t.readk) (or
(p, t.start)).

3.3.4. Step D: set conditions

This step determines the conditions of t.commit,
t.abort1 and t.abort2 transitions so that they can
check the executability of transition t.

(D-1) Set the conditions of t.commit transitions: This
step determines the condition of each t.com-

mitk so that it fires only if all the input places
of t have assignable sets and they satisfy the
condition of t. Formally,
– for each t.commitk (k 5 i), set the predicate

C(t) ^ C 0 ^ C00 to be the condition of
t.commitk. C(t) is the condition of t in the
service specification, C 0 is a logical formula
‘‘w 5 /’’ where w is a variable in the label
of arc (p.innerk, t.commitk), and C00 is a log-
ical formula ‘‘§jxj 5 /’’ where xj is a var-
iable in the label of arc (bjk, t.commitk),
and

– for t.commiti, set the predicate C(t) ^ C00 to
be the condition of t.commiti.

(D-2) Set the conditions of t.abort1 transitions: This
step determines the condition of each
t.abort1k so that t.abort1k fires only if the
condition of t is not satisfied or some input
places which are not at site k do not have
assignable sets. Formally,
– for each t.abort1k (k 5 i), set the predicate
:CðtÞ _ C0 ^ C00 to be the condition of
t.abort1k. C(t) is the condition of t in the
service specification, C 0 is a logical formula
‘‘w 5 /’’ where w is a variable in the label
of arc (p.innerk, t.abort1k), and C00 is a log-
ical formula ‘‘ ¤jxj = /’’ where xj is a var-
iable in the label of arc (bjk, t.abort1k), and

– for t.abort1i, set the predicate :CðtÞ _ C00

to be the condition of t.abort1i.
(D-3) Set the conditions of t.abort2 transitions: This

step determines the condition of each
t.abort2k so that it fires only if some input
places at site k do not have assignable sets.
Formally,
– for each t.abort2k, set the condition w = /

where w is a variable in the label of
(p.innerk, t.abort2k).
3.3.5. Step E: decompose net
After applying Step D, we obtain an integrated

form of the protocol specification Pspec which
includes the behavior specifications for all sites
interconnected by the communication places. This
step decomposes the obtained net into N indepen-
dent specifications, one for each site. This is done
by splitting each communication place into two
places so that the specification of each site can be
an independent Pr/T-net.
3.4. Another transition execution protocol

As stated, the transition execution (TE) protocol
may cancel an execution of transition t to avoid
deadlock. In this case, the values exchanged for
using generating tokens are discarded without being
used. If the size of the values of these unused tokens
is large and if such a cancellation is repeated many
times, the protocol becomes inefficient. In this case,
we may use the following transition execution pro-
tocol that exchanges these values only if it is known
that t will be executed (thus no cancellation of t hap-
pens after the decision).

We change the original TE protocol as described
in Section 3.2 as follows:

1. At Step (1) of the original TE protocol, site i

sends only the values used to check the condition
of t and only to the reading sites.
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2. At Step (2) of the original TE protocol, site j

sends only the values used to check the condition
of t and only to the other reading sites.

3. At Step (3) of the original TE protocol, only the
reading sites examine the conditions (i) and (ii). If
(i) and (ii) are true, the reading sites send at this
moment the values used to generate new tokens
to the writing sites which need them. The writing
sites receive these values and generate new
tokens.

As an application example, let us consider again
the service specification given in Fig. 2(a). Here, we
assume that the size of values of the tokens h‘‘b’’i
and h‘‘d’’i is large. Fig. 5 shows a protocol specifica-
tion derived based on the above given TE protocol.
Similar to the previous example, we assume that the
input places p1, p2 and p5 are located on site A, p3 on
site B, and p4 on site C.

Here unlike the previous TE protocol, the token
value assigned to the variable w in place p4 and
needed for generating tokens at site A is not sent
to A by au.ca since it is not needed for examining
the condition x < z of t. The value of w is only used
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Fig. 5. A protocol specification corresponding to the service specificatio
for generating tokens at site A. Similarly, the value
of y is not sent from site A to site C. If condition of
tu is true, sites A and C send via ‘‘cu.ac’’ and ‘‘cu.ca’’
the values of y and w, respectively. Using these val-
ues, sites A and C generate new tokens. This means
that, the large-size token value h‘‘b’’i or h‘‘d’’i in p2

is only sent to site C and this is done only if the con-
dition of tu is true. Similarly, the large-size value
token h‘‘d’’i in p4 is only sent to site A and this is
done only if the condition of tu is true. The deriva-
tion algorithm corresponding to this TE protocol is
given in Appendix A.

4. Timestamp-based contention control

4.1. Motivation and outline

For a given service specification, our derivation
algorithm derives a protocol specification that is
deadlock free. This is due to the fact that each tran-
sition of a service specification can be executed only
when it acquires tokens from its input places. In
our transition execution algorithm, the primary
site of a transition sends requests, for executing
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n in Fig. 2(a) derived using the TE protocol given in Section 3.4.



270 H. Yamaguchi et al. / Computer Networks 51 (2007) 258–284
the transition, to all other reading sites that have
input places of the transition. If all the required
tokens are acquired by these sites and the condition
of the transition is true, the execution of the transi-
tion will be committed. Otherwise, the execution of
the transition will be canceled and thus the protocol
specification is always deadlock-free.

However, if the service specification includes
competitive transitions that share multiple choice
places (i.e. the Pr/T-net of the service specification
is not a free-choice net) as shown in Fig. 6(a), and
if the shared choice places are allocated to different
sites, the tokens in the shared places are obtained at
those different sites by these transitions using a first-
come-first-serve policy. In this case, if a transition
fails to obtain all the tokens in the shared choice
places, it immediately releases already obtained
tokens as explained above. As a result, the protocol
specification may have live-lock problems, where
(some or all) competitive transitions may starve.
This may happen particularly if the propagation
delays from the primary sites to the sites to which
the shared places are allocated are different.

As an example, assume that transitions TX and
TY of a given service specification share the two
input places PA and PB, as shown in Fig. 6(a).
Assume that each of these input places has a token,
places PA and PB are allocated to sites A and B,
respectively, and sites X and Y are the primary sites
of TX and TY, respectively, as illustrated in Fig. 6(a).
It might happen that if the request from the primary
site of transition TX (i.e. site X) has a delay to site A

shorter than that of the primary site of TY (i.e. site
Y), and if the request from the primary site of TX

has a longer delay to site B than that of the primary
site of TY, then TX can acquire the token in PA at
PX PA PB PY
(site X) (site A) (site B) (site Y)

<"c"> <"c">

TX TY

<x> <x>

<b><a>
<b>

<y><y>

<a><x> <y>

<"x"> <"y">

Tx

Fig. 6. (a) Service specification and place allocation (we assume that th
timing chart (the execution of both TX and TY is aborted).
site A and TY can acquire the token in PB at site
B. Consequently, since neither TX nor TY can
acquire both tokens in places PA and PB, the
requests from the primary sites are not granted
and the execution of TX and TY is aborted immedi-
ately as shown in the timing chart of Fig. 6(b). This
scenario may be repeated several times until either
TX or TY successfully acquires both tokens.

In order to reduce the possibility of having such
cancellations, we introduce a Timestamp-based
Contention Control (TCC) algorithm. The TCC
algorithm controls the order of requests to shared
places so that all these shared places have the same
total order. In order to reduce cancellations, the
TCC algorithm does not cancel a request unless it
violates the total order at a site which has some
shared resources. For this purpose, the TCC uses
global time to set an order. First, the primary sites
of TX and TY timestamp their requests using the glo-
bal time, and send these requests to sites A and B.
Let t(TX) and t(TY) denote these timestamps and
let us assume that t(TX) < t(TY). The timestamp of
a request is recorded on the place when the place’s
token is acquired by the request. If the token of
place PA or PB has been acquired by the request
of TX when the request of TY arrives, the request
of TY can wait for the request of TX to release the
token, since the ordering TX;TY satisfies the time-
stamp ordering rule. On the other hand, if the token
of place PA or PB has been acquired by the request
of TY, then TX is canceled immediately since the
ordering TY;TX violates the timestamp ordering
rule. Consequently, the request of TY is not canceled
in this case as shown in Fig. 7(a). Moreover, in this
case, a subsequent request of TX with a newer time-
stamp than TY is permitted.
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.start

PX PA PB PY

(site X) (site A) (site B) (site Y)

TY.read
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Fig. 7. Timestamp-based contention control algorithm.

H. Yamaguchi et al. / Computer Networks 51 (2007) 258–284 271
The concept of our TCC algorithm is similar to
the concurrent transaction control in database sys-
tems. But usually such transaction control does
not assume multiple shared resources distributed
over multiple sites, so we design a new distributed
algorithm for such a purpose. The goal of our
design is to reduce cancellations without introduc-
ing special messages or special structures that may
render the protocol specifications more complex.
Our TCC algorithm requires a timestamp mecha-
nism that uses global time without introducing addi-
tional messages into protocol specifications. Some
existing work such as [9,31] has also considered
implementing contention control at the protocol
level. In this paper, we deal with more complex con-
tention where multiple transactions compete for
multiple resources distributed over sites.

In the following subsections, we define a set of
transitions and places of a service specification,
called conflict set, that are subject to contention con-
trol. Then we present the TCC algorithm that adds
a timestamp mechanism to the parts of the protocol
specification corresponding to the conflict set.

4.2. Preliminaries

We recall that for a transition t, •t (or t•) denotes
the set of input (or output) places of t. Also, a place
which never loses nor gains tokens by firing of tran-
sitions (i.e. the place is in self-loops) is called a per-

sistent place hereafter.
A set C of transitions and places is said to be a

conflict set iff (i) for each place p in C, p has at least
two transitions in C as its output transitions, (ii) for
each transition t 2 C, t has at least two places in
t 2 C as its input places, and (iii) each place in C
is a persistent place. For example, in Fig. 6(a),
{TX, TY, PA, PB} is a conflict set. We apply the
TCC algorithm for each conflict set. The reason
why we focus only on persistent places is that in
such a place, tokens will be returned and transitions
can wait for tokens to be back even if some other
transitions currently use them.

We say that a pair of a place and a transition [p,
t] in a conflict set has a read attribute if there exist a
variable x and a place p 0 such that x is in the arc
label of (p, t) and x is in the arc label of (t, p 0).
We also say that [p, t] has a write attribute if L(t,
p) is not the same as L(p, t) (that is, if (t, p) and
(p, t) have different arc labels). [p, t] is said to be
(a) RW-persistent (i.e. read-write) if [p, t] has both
read and write attributes, (b) RO-persistent (i.e.
read-only) if [p, t] has only a read attribute, and
(c) WO-persistent (i.e. write-only) if [p, t] has only
a write attribute.

For example, in Fig. 8(a), [p, t] is RW-persistent
since the variable x is used on an output arc of t and
L(t, p) = hyi is not the same as L(p, t) = hxi. In
Fig. 8(b), [p, t] is RO-persistent since x is used on
L(t, p) and L(t, p) = L(p, t) = hxi. In Fig. 8(c), [p,
t] is WO-persistent since x is not used in any output
arc of t and L(t, p) is not the same as L(p, t). This
classification of place-transition pairs will be used
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in the TCC algorithm for updating the timestamps
attached to tokens in the places of a conflict set.

Here, we introduce two types of variables that will
be used by our TCC algorithm. For every token (say
c) in a place of a conflict set in the protocol specifica-
tion, we attach two (timestamp) variables denoted
by R(c) and W(c). In the example of Fig. 6(a), we
attach R(c) and W(c) variables to the tokens h‘‘c’’i
in PA and PB in the protocol specification. At the ini-
tial marking, the values of these variables are set to
zero. We assume that each site has a clock that is
synchronized with those of the other sites.4

4.3. Timestamp-based contention control mechanism

As stated earlier, our timestamp-based contention
control (TCC) algorithm allows a transition t in a
conflict set to wait for tokens to be released. For this
purpose, when a transition t is selected by a primary
site for examining its executability at a global time,
the primary site sets a timestamp of the global time
(this global time is referred to as occurrence time of

t) to the variable o(t). This value is sent to the read-
ing sites of t which have places of the conflict set in
order to inform these reading sites that transition t

has been chosen for examining its executability. If
the execution of t at a reading site does not preserve
the order of timestamps, then the reading site aborts
this execution by sending cancellation tokens to all
the other reading and writing sites. In response to
these cancellation tokens, these sites release and
return to their original places the tokens they already
acquired for the execution of t.

In order to incorporate the above mechanism in
our protocol specifications, we use the values of
the timestamp variables R(c) and W(c) and the
occurrence times of transitions set by the primary
sites. The decision made by a reading site of a tran-
sition t to wait for a token (say c) in a place p of the
conflict set or to cancel the execution of t, is based
on the set of precondition rules. These rules are cho-
sen according to the type of the pair [p, t] as shown
in Table 4.

These rules are inspired from those presented in
Ref. [32]. For efficiency, we distinguish the types
of place-transition pairs by their operations (read
and write operations) so that a read-only operation
can ignore other read-only operations (they do not
4 We use these clocks only to determine the total order of the
execution of transitions in a conflict transition set. Thus, these
clocks do not need to be precisely synchronized.
affect each other). For example, rule (b) in Table 4
indicates that the RO-persistent pairs should only
consider the order of other pairs that have write
operations. Rule (a) and rule (c-i) in Table 4 indicate
that RW- and WO-persistent pairs must consider
the order of every other pair. Rule (c-ii), which is
known as Thomas’s write rule, indicates that a token
value, written by the write-only operation and over-
written by a newer write operation, can be ignored if
this value is not used by any read operation.

When transition t tries to acquire a token c from
place p at a reading site, it first checks the precondi-
tion that corresponds to the type of [p, t]. If the pre-
condition is true, the reading site acquires the token.
If the token c is not in p, the reading site waits for c

to be released. If all reading sites acquire assignable
sets, the execution of t will actually take place. In
this case, we update the values of the timestamp
variables R(c) and W(c) as specified in the corre-
sponding post-condition action shown in Table 4.
On the other hand, if the precondition is not true,
the reading site of t aborts the execution of t. The
details of this algorithm are given in Appendix C.

4.4. Discussion

Our TCC algorithm may cause a fairness prob-
lem. For example, in Fig. 6(a), let us assume that
the primary site of TY has much longer delays to
sites A and B than the primary site of TX. In this
case, t(TY) may be too old when the request of TY

arrives at site A or site B, and thus TY’s request
may be cancelled, because during the propagation
of TY’s request, another newer request of TX may
use these tokens and update their timestamps. This
results in unnecessary cancellation even if these
tokens are available, as shown in Fig. 7(b). This
cancellation does not happen if the TCC algorithm
is not applied to the protocol specification. That is,
without the contention control mechanism by TCC
algorithm, TY’s request is accepted in Fig. 7(b).

Since the TCC algorithm is independent of the der-
ivation algorithm, we may choose another design
option. For example, to pursue complete fairness,
an alternative algorithm can be introduced that pre-
vents cancellations, suffering extra delay. We assume
that all the sites know the maximum delay D of all the
channels between the sites as well as the global time.
The primary site of a transition t sets a timestamp o(t)
to a request, and sends it to the reading sites which
have shared places. Each reading site which has
shared places has a list to store received requests.



Table 4
Pre- and post-conditions to get token c in p for the execution of t

Type of [p, t] Pre-condition Post-condition

(a) RW-persistent R(c) < o(t) ^W(c) < o(t) R(c) := W(c) := o(t)
(b) RO-persistent W(c) < o(t) R(c) := o(t)
(c-i) WO-persistent R(c) < o(t) ^W(c) < o(t) W(c) := o(t)
(c-ii) R(c) < o(t) < W(c) –

Fig. 9. Application example 1: service specification of an MPEG2 transcoding service.
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Any request with timestamp o(t) is removed from the
list and processed exactly at time o(t) + D. Consider-
ing the fact that any request issued no later than glo-
bal time o(t) arrives no later than time o(t) + D, all
the requests are completely ordered at each reading
site. Due to this feature, no cancellation occurs.5
5 It may happen that two requests have the same timestamp. In
such a case we may use the unique identifiers of transitions to
determine their orderings.
Instead, any request must be delayed for D. Depend-
ing on the application domain, we may choose
another variation of the algorithm. Space limitations
do not allow us to discuss this further.

5. Tool support and application examples

Synthesis methods have been applied to many
applications such as communication protocols
[26,27], factory manufacturing systems [33],
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distributed cooperative work management [15] and
so on [25,28].

In the following subsections we apply our synthe-
sis method to a distributed Media Transcoding
(MT) service on service overlay networks and to a
distributed software development process called
ISPW-6 [29].

5.1. Toolset

Deriving protocol specification by hand is very
complex and time consuming for large systems.
Accordingly, we have developed a toolset in Perl
that implements our algorithm and co-works with
a graphical tool ‘‘CPN Tools’’ [24] for the represen-
tation of the service and protocol specifications. In
the toolset, we first describe the service specification
using CPN Tools that is used to design, simulate
and verify coloured Petri nets (CPNs) including
Pr/T-nets. CPN Tools can be used for modeling
Pr/T-nets since Pr/T-nets can be regarded as a
sub-class of CPNs. Second, our tool parses the given
Fig. 10. Protocol specification of MPEG2 transcoding service show
service description written in the CPN Tools format
(described in XML and DTD) using the XML par-
ser [34]. Third, our Perl program uses the parsed
specification and generates a corresponding proto-
col specification according to our derivation
algorithm.

5.2. Application examples

Recently, the use of collaborative computation
that connects distributed application components
with each other to provide services became very pop-
ular. One typical example is a service overlay net-
work where several servers build a virtual
backbone by unicast tunnels (an overlay network)
to provide transparent services to users [35]. As a
realistic example, we consider the design of a media
transcoding (MT) service on overlay networks. The
MT service decomposes an MPEG2 file into its con-
stituent media (video, audio, text), converts these
media representations into versions with different
quality and finally combines these different media
n by screen shot from CPN Tools [24]: top level descriptions.
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versions to obtain several MPEG files that are suit-
able for playback by users with various quality
requirements. The description of this MT service is
shown in Fig. 9 using the notation of CPN Tools.
The notation used by CPN Tools is different from
what we have seen so far. The names of places and
transitions are written inside circles and transitions,
respectively. The strings associated with places and
written outside the circles are place types, which
were not explicitly written in the preceding figures.

In Fig. 9, the inputs and outputs of this service
are represented as places named Pio1,. . ., Pio4. The
MPEG2 file is entered from Pio1 and decomposed
into three components by the transition T1. Then
each component is copied and transcoded, and
finally components are merged by T7, T12 and T14

in parallel for heterogeneous users which require
specific qualities appropriate to the capability of
their playback devices. We have distributed this ser-
vice onto three sites 1, 2 and 3. We have used the
following allocation:
Fig. 11. Protocol specification of MPEG2 transcoding service shown b
substitution transition T12.
Site 1: {Pio1, Pio2, Pr1, Pr3, Pr6, Pr8, Pr12, Pr15,
Pr17},

Site 2: {Pio3, Pr4, Pr9, Pr10, Pr13} and
Site 3: {Pio4, Pr2, Pr5, Pr7, Pr11, Pr14, Pr16, Pr18,

Pr19}.

Then the derived protocol specification is shown
as a screen shot from the CPN Tools in Figs. 10
and 11 (the net layout was adjusted manually). For
better readability, our tool provides a hierarchical
description of the protocol specification. It includes
an overview of the protocol specification as well as
the detailed behavior that simulates each transition
of the service specification. Specifically, the protocol
specification of each site i, say Pspeci, preserves the
structure of the service specification where only the
related transitions and the places allocated to that
site remain. This is referred to as a top level descrip-

tion. Each transition t of Pspeci in the top level
description is a substitution transition, which is
replaced with a net called subpage that simulates
y screen shot from CPN Tools [24]: sub-pages corresponding to
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transition t. A substitution transition and its corre-
sponding subpage are interconnected by fusion
places. Fig. 10 shows the top level descriptions of
Pspec1, Pspec2 and Pspec3, and Fig. 11 shows the
three sub-pages substituted for transition T12 in these
top level descriptions. The sub-pages of the other
transitions are omitted due to space limitations.

As another example, we consider distributed
development of software that involves five engineers
(project manager, quality assurance, design, and
two software engineers). Each engineer has his/her
own machine connected through a network, and
participates in the software development process
using the machine. The resources used in the process
T0:Schedule & Assign Tasks

PrDESIGN

Pr3:Test Unit Package

TUNIT

Pr2:Test Plans

TPLAN

Pr1:Requirement
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Pr4:Test Results
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Fig. 12. Application example 2: service sp
are allocated to those machines. Then the distrib-
uted process specification of each engineer clearly
indicates how he/she proceeds with the development
process. This development process includes tasks for
scheduling and assigning tasks, design modification,
design review, code modification, test plan modifica-
tion, modification of unit test packages, unit testing,
and progress monitoring. The engineers cooperate
with each other to finish these sub-sequential tasks
in a suitable order. The reader may refer to
ISPW-6 Core Problem [29] for a complete descrip-
tion of this process, which was provided as an exam-
ple to help the understanding and comparison of
various approaches to process modeling. Fig. 12
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shows the process description in the notation of the
CPN Tools. We note that for convenience, we do
not show the progress monitoring tasks in Fig. 12.
We omit to show the protocol specification due to
space limitations.

It took 15 and 25 seconds on a Windows XP PC
with Intel Xeon 3.0 GHz CPU and 1.5 GB memory
to derive these protocol specifications.

6. Conclusion and current research work

We have proposed a protocol synthesis technique
for systems modeled as Pr/T-nets (predicate/transi-
tion-nets), a first-order extension of Petri nets. Our
technique is based on a top-down approach where
a service requirement is defined in the form of a
Pr/T-net with a centralized view, and then it is
decomposed into communicating components
located on different sites which together provide
the required service. The originality of our approach
is the fact that non-restricted Petri nets with conflict-
ing transitions can be used for the description of the
services which are the starting point of the protocol
development. This is a very important feature for
modeling recent distributed collaborative systems
since they often include multiple (and to be distin-
guished) processes such as mobile users. Moreover,
we have presented a contention control algorithm
for a distributed environment based on timestamps.
A tool has been developed that implements our algo-
rithm and works together with other existing tools.
Moreover, two application examples are provided.
The existing Petri net based approaches [9–15] do
not support all of the above features.

We would like to mention the advantage of our
algorithm in terms of readability and reusability of
derived specifications, which are very important fac-
tors in software development and management. Our
algorithm splits (decomposes) one by one every
transition of the service into corresponding transi-
tions that can be executed in a distributed way.
Accordingly, the structure of the derived protocol
specification is similar to the structure of the service
specification which increases the readability. More-
over, due to the nature of our derivation algorithm,
we have a relation between each transition of the
service specification with corresponding transitions
of the protocol specification. Similar to our previous
work in [15], this relation makes it easy to re-use
unaffected parts of an already derived protocol spec-
ification after modifying the corresponding service
specification.
The synthesis protocol presented in this paper
assumes that the allocation of service places to dif-
ferent communicating components is given. How-
ever, in the context of distributed applications,
there may be a large number of possible place allo-
cations, and their choice may have an important
impact on the performance of the resulting system.
Therefore it is desirable to find an optimized place
allocation and system. This is part of our current
research work. In a preliminary version of this
work [36] we incorporated into the protocol pre-
sented in this paper a model that determines an
optimal allocation of places based on some cost cri-
teria such as channel utilization and total response
time costs. Currently, we are enhancing this model
by incorporating more cost criteria that could be
used in various application areas for deriving pro-
tocol specifications.
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Appendix A. Derivation algorithm for another te

protocol

We present the derivation algorithm correspond-
ing to another TE protocol presented in Section 3.4.
We use the notations in Table 3 and the rules in
Fig. 4. For simplicity of notations, we let i denote
ps(t) in this algorithm description.

A.1. Step A: decompose transitions

(A-1) Decompose t into t.condition transitions and

t.commit transitions:
– Apply Rule 1 to divide t into a set of t.con-

ditionk transitions and a set of t.commith

transitions such that for each k 2 RS(t) a
t.conditionk transition is created at site k

and for each h 2WS(t)nRS(t) a t.commith

transition is created at site h. Then attach
the places in ALCk(•t) [ ALCk(t•) to t.con-

ditionk and the places in ALCh(t•) to
t.commitk.

(A-2) Add t.commit transitions and p.inner2 places:
– For each t.conditionk (k 2 RS(t) \WS(t)),

apply Rule 2 to insert a place p.inner2k and
a transition t.commitk after t.conditionk.
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(A-3) Add t.start and t.read transitions and p.inner1
places:
– For each t.conditionk (k 5 i), apply Rule 2

to insert a transition t.readk and a place
p.inner1k before t.conditionk, and

– for t.conditioni, apply Rule 2 to insert a
transition t.start and a place p.inner1i

before t.conditioni.
(A-4) Add communication places:

– For each pair of t.start and t.readj, apply
Rule 3 to insert a communication place aij,

– for each pair of t.readj and t.conditionk

(j 5 k), apply Rule 3 to insert a communi-
cation place bjk,

– for each pair of t.conditionk and t.commith

(h 2 RS(t) and k 5 h) where Vink(t) \
Vouth(t)n(Vinh(t) [ Vcond(t)) 5 ;, apply
Rule 3 to insert a communication place ckh,

– for each pair of t.conditionk and t.commith

(h 62 RS(t) and k 5 h) where (Vink(t) [
Vcond(t)) \ Vouth(t) 5 ;, apply Rule 3 to
insert a communication place ckh, and

– for each t.commith (h 62 RS(t)) where
Vouth(t) = ;, apply Rule 3 to insert a com-
munication place cih from t.conditioni to
t.commith.

A.2. Step B: introduce cancellation and identification
mechanisms

(B-1) Add t.cancel transitions:
– For each t.readj, apply Rule 4 to add a

transition t.cancelj where •t.cancelj = {aij}
and t.cancelj• = t.readj•.

(B-2) Add t.abort1 transitions:
– For each t.conditionk, apply Rule 4 to add

a transition t.abort1k where •t.abort1k =
•t.conditionk and t.abort1k• = ALCk(•t).

(B-3) Add t.abort2 transitions:
– For each t.conditionk (k 5 i), apply Rule 5

to add a transition t.abort2k where
•t.abort2k = • t.conditionk.

(B-4) Add p.counter place:
– For t.start, apply Rule 6 to add a place

p.counter with a token h0i inside.

A.3. Step C: set arc labels

(C-1) Set arc labels of p.counter place:
– Set hni as the label of (p.counter, t.start)

where n is an integer variable, and hn + 1i
as the label of (t.start, p.counter).
(C-2) Determine values carried by a communication

places:
– For each aij, set the tuple of the variable n

and all the variables in Vini(t) \
Vcond(t)nVinj(t) as the labels of the arcs
(t.start, aij), (aij, t.readj) and (aij, t.cancelj).

(C-3) Determine values carried by b communication

places:
– For each bjk, set the tuple of the variable n

andthe variables in Vinj(t) \ Vcond(t)n
Vink(t) as the labels of the arcs (t.readj,
bjk), (bjk, t.conditionk), (bjk, t.abort1k) and
(bjk, t.abort2k), and

– set a tuple of the variable n and m /’s as the
label of (t.cancelj, bjk) where m = jVinj(t) \
Vcond(t)nVink(t)j.

(C-4) Determine values carried by c communication

places:
– For each ckh (h 2 RS(t)), set a tuple of the

variable n and the variables in (Vink(t) \
Vouth(t))n(Vinh (t) [ Vcond(t)) as the labels
of the arcs (t.conditionk, ckh) and
(ckh, t.commith), and

– for each ckh (h 62 RS(t)), set a tuple of the
variable n and the variables in (Vink(t) [
Vcond(t)) \ Vouth(t) as the labels of the
arcs (t.conditionk, ckh) and (ckh, t.commith).

(C-5) Determine values kept by p.inner1 places:
– For p.inner1i, set a tuple of the variable n and

all the variables in Vini(t) \ Vcond(t) as the
labels of the arcs (t.start, p.inner1i), (p.inner1i,
t.conditionj) and (p.inner1i, t.abort1i),

– for each p.inner1j (j 5 i), set a tuple of the
variable n and all the variables in Vini(t) \
Vcond(t) [ Vinj(t) as the labels of the arcs
(t.readj, p.inner1j), (p.inner1j, t.conditionj),
(p. inner1j, t.abort1j) and (p.inner1j, t.
abort2j), and

– set a tuple of the variable n and m /’s as the
label of the arc (t.cancelj, p.inner1j) where
m = jVini(t) \ Vcond(t) [ Vinj(t)j.

(C-6) Determine values kept by p.inner2 places:
– For each p.inner2h, set a tuple of the vari-

able n and all the variables in
Vouth(t) \ (Vinh(t) [ Vcond(t)) as the labels
of the arcs (t.conditionh, p.inner2h) and
(p.inner2h, t.commith).

(C-7) Determine values returned by t.abort1
transitions:
– For each (t.abort1k, p) (p 2 ALCk(•t)), set

its label as that of (p, t.readk) (or (p,
t.start)).
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A.4. Step D: set conditions
(D-1) Set the conditions of t.condition transitions:
– For each t.conditionk (k 5 i), set the predi-

cate C(t) ^ C 0 ^ C00 to be the condition of
t.conditionk. C(t) is the condition of t in
the service specification, C 0 is a logical for-
mula ‘‘w 5 /’’ where w is a variable in the
label of arc (p.inner1k, t.conditionk), and C00

is a logical formula ‘‘§jxj 5 /’’ where xj is
a variable in the label of arc (bjk, t.condi-

tionk), and
– for t.conditioni, set the predicate C(t) ^ C00

as the condition of t.conditioni.
(D-2) Set the conditions of t.abort1 transitions:

– For each t.abort1k (k 5 i), set the predicate
:CðtÞ _ ðC0 ^ C00Þ to be the condition of
t.abort1k. C(t) is the condition of t in the
service specification, C 0 is a logical formula
‘‘w 5 /’’ where w is a variable in the label
of arc (p.inner1k, t.abort1k), and C00 is a log-
ical formula ‘‘ ¤jxj = /’’ where xj is a var-
iable in the label of arc (bjk, t.abort1k).

– For t.abort1i, set the predicate :CðtÞ _ C00

to be the condition of t.abort1i.
(D-3) Set the conditions of t.abort2 transitions:

– For each t.abort2k, set the condition w = /
where w is a variable in the label of (p.
inner1k, t.abort2k).

A.5. Step E: decompose net

After applying Step D, we obtain an integrated
form of the protocol specification Pspec which
includes the behavior specifications for all sites
interconnected by the communication places. This
step decomposes the obtained net into N indepen-
dent specifications, one for each site. This is done
by splitting each communication place into two
places so that the specification of each site can be
an independent Pr/T-net.

Appendix B. On the validity of the derivation

algorithm

Here we comment on the validity of the deriva-
tion algorithm presented in Section 3.3. Particularly,
we show that the Pr/T-subnets obtained by applying
the TE protocol to a transition t of Sspec realize the
same behavior as t. Moreover, any executable tran-
sition sequence of Sspec is preserved in Pspec and
vice versa.

H. Yamaguchi et al. / Compu
Hereafter, the set of N sites is denoted by S. Also
Pspec of site i is denoted by Pspeci. Thus
¨i2SPspeci = Pspec. Moreover, the Pr/T-subnet of
Pspeci that corresponds to t is denoted by Pspeci(t).
In Fig. B.1, we show PspecA of Fig. 2(b) as an exam-
ple where PspecA(tu) is emphasized for readability.
We first comment on the fact that {Pspeci(t)j
"i 2 S} simulates the behavior of t.

Validity of simulation of each transition. Due to
Step A of the algorithm, any combination of t.start,
t.readj and t.commitk are executed in this order. Due
to Step B of the algorithm, t.cancelj may fire instead
of t.readj at a reading site, and t.abort1k or t.abort2k

may fire instead of t.commitk at a reading or writing
site. Consequently, we can say that any combination
of t.start, t.readj (or t.cancelj) and t.commitk (or
t.abort1k or t.abort2k) are executed in this order.

Due to Step C of the algorithm, we can easily say
that each t.commitk at a reading site has all the val-
ues needed to check the condition of t and to gener-
ate tokens to the output places of t allocated to site
k, in its input places. We can also say that t.abort1k

has all the values needed to be returned to the input
places of t allocated to site k. Assuming these facts,
we show the following facts for the validity of the
algorithm. (1) If t.start and all t.readj transitions fire
and if the condition of t is true, then all t.commitk

transitions will fire, and tokens are generated to
the output places of t. (2) If t.start and all t.readj

transitions fire and if the condition of t is not true,
then all t.abort1k transitions will fire that restore
the tokens taken by t.readk transitions to the input
places of t. (3) If t.start, some t.readj transitions
and some t:cancelj0 transitions fire, then t.abort1j

transitions will fire that restore the tokens taken
by t.readj transitions to the input places of t and
t:abort2j0 transitions will fire.

First, due to Step D-1 of the algorithm, each
t.commitk fires only if t.start and all the t.readj fire
and if the condition of t is true. Therefore, the above
fact (1) is shown. Secondly, due to Step D-2 of the
algorithm, each t.abort1k will fire only if t.start

and all the t.readj fire but the condition of t is not
true. Therefore, the above fact (2) is shown. Finally,
let j 0 denote a reading site where some input places
of t allocated to site j 0 do not have assignable sets.
In this case, t:cancelj0 fires and each reading or writ-
ing site (say k) receives a token filled with / via com-
munication place bj0k. As a result, due to Step D-2 of
the algorithm, t.abort1k will fire and the tokens
taken by t.readk transition are restored to the input
place of t at site k. At site j, after firing of t.cancelj, a
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token filled with / is generated in p.innerk. Due to
Step D-3 of the algorithm, t.abort2j will eventually
fire. In this case, no assignable sets are returned
because no assignable sets are taken from the input
places at site j.

Then assuming the correctness of {Pspeci(t)j
"i 2 S}, we comment on the fact that any transi-
tion sequence executable in Sspec is preserved in
Pspec and vice versa. For simplicity of discussion,
we assume that any {Pspeci(t)j"i 2 S} does not
have the cancellation mechanism, which just
returns the obtained assignable sets to the original
input places.

Validity of simulation of whole net. Due to Step
A of the algorithm, {Pspeci(t)j"i 2 S} has the fol-
lowing properties. (1) t.start is executed before
any t.read transition. (2) t.start transition and all
t.read transitions at reading sites are executed
before any t.commit transition. (3) Once a t.commit

transition is executed, all the rest of t.commit tran-
sitions will eventually be executed. Here, since any
reading site can be a primary site in our algorithm,
the execution order of t.start and t.read does not
affect the validity. Therefore, we ignore the prop-
erty (1) in this proof. Each {Pspeci(t)j"i 2 S} sim-
ulates the behavior of t correctly, but from the
properties (2) and (3), timing to take tokens from
input places of t at each reading site may not be
synchronized with the other reading sites, and tim-
ing to produce tokens to output places of t at each
writing site may not also be synchronized with the
other writing sites. From this fact, we can regard
that Pspec is equivalent to a modified Sspec where
a pair of a dummy transition and a dummy place
is inserted for each pair of a transition and a place
of Sspec. We denote the modified Sspec by Sspec 0

and show an example in Fig. B.1(b), where dummy
transitions and places are shown by meshed parts.
Obviously, this transformation does not change the
executable set of transition sequences. Then we can
obviously say that any transition sequence execut-
able in Sspec is also executable in Sspec 0 and vice
versa. This means that any executable transition
sequence of Sspec is preserved in Pspec and vice
versa.

Appendix C. Detailed algorithm for adding

timestamp-based contention control mechanism

We present the algorithm to add our Timesta-
mp-based Contention Control (TCC) described in
Section 4.

For each conflict set C in the service specification,
this algorithm is applied to the corresponding part
of the protocol specification. We let i denote the
primary site of t.
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1. Set timestamps and identifiers to tokens: For each
token c in place p 2 C, add two zero values (the
initial values of the read and write timestamps)
and a unique identifier to c.
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Fig. C.1. Timestamp-based contention control mechanism is applied to
allocation in Fig. 6(a).
2. Set occurrence time of transitions: For each transi-
tion t 2 C, add occurrence time o(t) to the label
of (t.start, aij) at the primary site i and to the labels
of (aij, t.readj) and (aij, t.cancelj) at each site j.
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protocol specification derived from service specification and place
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3. Add arcs: For each connected pair [p, t] where
p; t 2 C (we let j denote the site which has place
p), add arcs (t.readj, p), (t.cancelj, p), (p, t.cancelj),
(p, t.commitj) and (p, t.abort1j) to the protocol
specification.

4. Set transition conditions and arc labels: For
each connected pair [p, t] where p; t 2 C (we
let j denote the site which has place p), we
identify each tuple (say u) of variables in the
label of arcs (p, t.readj) (or (p, t.start)). Then
there must be the tuples in the labels of arcs
(t.commitj, p) and (t.abort1j, p) that return the
token assigned to u since p is a persistent place.
We denote these tuples by v and w, respec-
tively. The followings are applied for each tuple
u (and its corresponding tuples v and w). We
introduce two timestamp variables R(u) and
W(u) to store the timestamps of a token
assigned to u, and the variable id(u) that carries
the identifier of the token. We also introduce
two timestamp variables R(u) 0 and W(u) 0 to
store the timestamps updated by the post-con-
ditions of Table 4.

(i) Add the pre-condition of Table 4 corre-
sponding to the type of [p, t] to the condition
of t.readj (or t.start). If [p, t] is WO-persis-
tent, use ‘‘R(u) < o(t)’’ instead of the precon-
dition of Table 4. This is to implement
Thomas’s write rule. Also add the negation
of the pre-condition to the condition of
t.cancelj.

(ii) Add a logical formula z 5 / where z is a
variable in u to the condition of t.readj.

(iii) Add the variables R(u), W(u) and id(u) to the
labels of (p, t.readj) (or (p, t.start)). Then set
the same label of (p, t.readj) to (p, t.cancelj)
and (t.cancelj, p).

(iv) Add the tuple of /’s, the updated time-
stamps by the corresponding post-condition
of Table 4, and the variable id(u) to the label
of arc (t.readj, p). If [p, t] is WO-persistent,
use the function ‘‘?(W(u) < o(t)): /: s’’
instead of each /. This is to implement Tho-
mas’s write rule. ‘‘?A:B:C’’ is a function that
returns B if A is true, and returns C if A is
not true.

(v) Add the variables R(u), W(u) and id(u) to the
labels of the arcs to/from p.inner place.

(vi) Add the variables R(u) 0, W(u) 0 and id(u) to
tuple v in the label of arc (t.commitj, p). Cor-
respondingly, add the tuple (say v 0) of arbi-
trary but unique variables and the variables
R(u) 0, W(u) 0 and id(u) to the label of arc
(p, t.commitj). If [p, t] is WO-persistent,
instead of each function (say y) in tuple v,
use ‘‘?(z = s): x: y’’ where z is a variable in
tuple v 0 and x is the variable in tuple u that
corresponds to function y. This is to imple-
ment Thomas’s write rule.

(vii) Add the variables R(u), W(u) and id(u) to
tuple w in the label of arc (t.abort1j, p).
Correspondingly, add the tuple of arbitrary
but unique variables and the variables
R(u) 0, W(u) 0 and id(u) to the label of
(p, t.abort1j).

The protocol specification corresponding to the
service specification and place allocation in
Fig. 6(a) where this algorithm is applied is shown
in Fig. C.1.
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