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Abstract

In order to perform precise evaluation of MANET applications in the real world, realistic mobility models are needed in
wireless network simulation. In this paper, we propose a new method to create urban pedestrian flows (UPF) mobility sce-
narios, which reproduce the walking behavior of pedestrians in urban areas. From given densities of pedestrians observed
at several points, our method derives a UPF mobility scenario that reproduces the walking behavior of pedestrians con-
sistent with the observed densities, using linear programming techniques. We have developed a network simulator Mobi-
REAL to design and evaluate MANET protocols and applications with this realistic mobility model. MobiREAL provides
various functions and tools including a mobility model to describe the behavior of individual nodes, a GUI to assist with
automatic generation of UPF mobility scenarios and a visualization tool. We have conducted some experiments using the
MobiREAL simulator. Through the experiments, we have investigated the influence of node mobility on the performance
of MANET protocols and have shown the usefulness of our method and the MobiREAL simulator.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Mobile ad hoc networks (MANETs) are
expected to be very useful and important infrastruc-
ture for achieving a future ubiquitous society. How-
ever, designing MANET protocols and applications
is a very complicated task since it is hardly possible
to build large-scale and realistic testbeds in the real

world for performance evaluation. Thus there are
always demands for methodologies that allow us
to design, analyze and validate given applications
in simple and inexpensive ways. Nowadays network
simulators are mainly used for such a purpose. Since
the constituents of MANETs are not stationary,
mobility models greatly affect the performance of
MANET systems [1–5]. Therefore, in order to eval-
uate the performance of MANET protocols and
applications more precisely in the real world, we
need more realistic mobility models. However, there
is a tradeoff between the reality of mobility models
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and the cost for their complexity. In particular,
modeling movement of real nodes (e.g., pedestrians)
with high fidelity for the evaluation of town-wide
deployed networks requires detailed observation or
survey of those people moving from place to place
along streets. Obviously such observation cannot
be easily carried out due to cost, privacy and other
reasons.

In this paper, we propose a method to create
urban pedestrian flow (UPF) mobility scenarios.
The method targets the reproduction of the walking
behavior of pedestrians in city sections, shopping
malls and so on. Given the average densities of
pedestrians on certain streets, which can be easily
obtained by fixed point observations, and a set of
walking paths pedestrians are likely to follow, the
method determines flows of pedestrians using linear
programming (LP) techniques. Also, the maximum
error between the observed density and the derived
density is minimized to reproduce realistic move-
ment of pedestrians. In our experiment, two persons
have measured the average densities of pedestrians
on 33 streets in a 500 m � 500 m area in front of a
large train station in Osaka for about a half hour.
The maximum error between the observed densities
and the derived densities was only 9.09%. We have
developed a network simulator called MobiREAL
for simulating MANET systems with UPF mobility
scenarios.

MobiREAL has been developed by extending the
network simulator GTNetS [6], developed at the
Georgia Institute of Technology. The main features
of MobiREAL are twofold. First, MobiREAL
introduces an original model called the condition
probability event (CPE) model to describe the
dynamic behavior of pedestrians, such as adjusting
walking speeds and directions to avoid collision
with neighbors and obstacles, and stopping at a
traffic signal. By the CPE model, we can also
describe the interaction between pedestrians and
networks, e.g., we can describe a scenario that a
mobile node makes a detour when it receives traffic
jam information through MANETs or cellular net-
works. MobiREAL is developed by integrating the
framework to enable the interaction between mobile
nodes and network applications. By incorporating
this CPE model into UPF mobility scenarios, the
reality of simulations is considerably improved. Sec-
ondly, MobiREAL provides a suite of useful tools.
With a visualization tool called an animator, the
results of simulations can be analyzed easily and
intuitively. The animator can visually animate the

movement of nodes, network topology, packet
propagation and so on, and can also show statistical
information like node density and the packet error
rate observed in each sub-region. Also, the UPF sce-
nario generation tool helps to input geographic
information like obstacles and street structure, and
automatically generates UPF scenarios. We note
that the UPF scenario generator and the mobility
simulator part of MobiREAL can be used indepen-
dently of the network simulator part of Mobi-
REAL. Therefore, it can easily be applied to
creating trace-based mobility scenarios supported
by many other network simulators. This feature
allows users of the other simulators to receive the
benefit of realistic mobility scenarios generated by
our toolset.

We have conducted some simulation experiments
using the MobiREAL simulator. Through the
experiments, we have investigated the influence of
node mobility on the performance of MANET pro-
tocols and have shown the usefulness of the pro-
posed method.

2. Related work

We often use simple mobility models such as the
random way point (RWP) model [7] in free space for
simulating MANET protocols. This is because such
simple mobility models are commonly available in
many simulators and therefore can be a common
environment for comparative experiments. Several
analytical results have been presented for the
RWP model and its variants [8–18]. In [8], Bettstet-
ter presents a variant of RWP where nodes can
change their directions smoothly, keeping the same
analytical properties as RWP. In [9], Chu and Niko-
laidis address that the node density of RWP is non-
uniform and that the non-uniformity depends on
the speed of nodes. Rojas et al. [10] show that the
Cauchy distributions and the chi-square distribu-
tions can model the deployment of locations and
residual pause times of waypoints more accurately
than uniform distributions and exponential distri-
butions, respectively. Hyytia et al. [11] derive an
expression that represents the nodes’ position distri-
bution of RWP in an arbitrary convex domain and
propose the RWPB model that forms contrastive
distribution with RWP. Yoon et al. [12] focus on
the velocities of nodes in RWP and prove that the
harmful effects are observed in the performance
evaluation before reaching the steady-state. Yoon
et al. also present the ‘‘sound mobility model” based
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on the RWP model in [13]. This model is designed to
maintain the average velocities of nodes to exclude
the harmful effects. McGuire [17] derives the sta-
tionary distribution of nodes for a general class of
mobility models. Nain et al. [18] analyze the station-
ary distribution of nodes in the random direction
model and describe its usefulness compared with
RWP.

There are many methodologies that synthesize
mobility models from observed data and geography
information to pursue reality [19–24]. In [19], Jard-
osh et al. introduce obstacles (i.e., buildings) and
pathways in a given simulation field. A pathway
between any two obstacles can automatically be
generated using a Voronoi graph computation algo-
rithm. The research group also provides plug-ins for
GloMoSim [25] and ns-2 [26] simulators to utilize
the proposed mobility. Hollick et al. [20] propose
a macroscopic mobility model for wireless metro-
politan area networks, where a simulation field is
divided into multiple zones with different attributes
such as workplace, commercial and recreation
zones. Also, each mobile node has an attribute of
resident, worker, consumer or student. Given trips
with destinations for user nodes, an existing urban
transportation planning technique is used to esti-
mate the user density in each zone. Hsu et al. [21]
present the WWP (weighted way point) model.
The WWP model defines a set of crowded regions
such as cafeterias and buildings at a university.
Given a distribution of pause times for each region
and a transition probability of nodes for each pair
of regions, it uses a Markov model to model nodes’
movement between these regions. For vehicular ad
hoc networks, a technique to reproduce realistic
mobility of vehicles in ns-2 is proposed in [22].
Group-based mobility models also capture some
aspects of realistic movement. Musolesi et al. [23]
propose a group-based mobility model based on
social networks of individual users. Also, several
group-based mobility models are proposed in [24].

There is some research analyzing the relationship
between network traffic and the behavior of users by
tracing user behaviors on wireless networks. Kotz
and Essien [27] analyze user behavior patterns by
collecting traces of 2000 users for 11 weeks at 476
wireless APs distributed in 161 buildings at Dart-
mouth College. They found interesting characteris-
tics of traffic depending on time and location. The
authors of [28–30] have also collected similar traces
from wireless network users in a metropolitan area
wireless network at the SIGCOMM2001 conference

location and in three large corporate buildings,
respectively. Thajchayapong and Peha [31] obtained
traces from the IEEE 802.11-based system at the
Carnegie Mellon University campus. Contrary to
most researchers’ expectations, the cell residence
times do not form an exponential distribution.
McNett and Voelker [32] analyze the mobility pat-
terns of users of wireless hand-held PDAs in a cam-
pus wireless network and synthesize the ‘‘campus
waypoint model” that serves as a trace-based com-
plement to the RWP model. Also, Kim et al. extract
user mobility characteristics from wireless network
traces and present a mobility model based on the
characteristics in [33]. These research efforts aim at
getting knowledge on capacity planning and AP
arrangement for building next-generation large-
scale mobile network infrastructures. However, they
require some wireless network infrastructures and a
very large amount of information collection to pro-
duce a mobility scenario.

Many realistic mobility models including our
proposed methodology have intended to model the
environment in the real world. Our proposed meth-
odology is closest to the work presented in [19–21],
which tries to reproduce the real world’s geography
and movement of nodes. These methodologies
require some observation of user behaviors in a tar-
get region, but the simplicity of observation is an
important factor because a large amount of human
and system resources are required to collect com-
plete information about users’ behavior. Therefore,
we propose a methodology to reproduce urban
pedestrian flows from the density of nodes. Densi-
ties of pedestrians can be obtained by fixed-point
observation using cameras and therefore it is easier
than measuring transition probabilities among hot-
spots, which is assumed by the methods presented in
[20,21]. The UPF model considers the node density
to reproduce the nodes’ moving flows over streets,
while many existing models use the node density
at the hotspots (i.e., major points) to reproduce
the nodes’ transitions among them. The UPF model
possibly fails to accurately reproduce the transition
probability among the major points, but can repro-
duce realistic flows on streets in the city section,
which are abstracted in those existing models.

2.1. Our contributions

One of the advantages of the MobiREAL is that
we can dynamically change the behavior of nodes
depending on the information received through the
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network. The dynamic control of pedestrians’ behav-
ior can be written simply using the CPE model.
Another advantage is the powerful GUI tools (Ani-
mator and UPF scenario generator). From simple
fixed-point observations on roads, we can automati-
cally calculate the flow rate of each pedestrian flow
from a starting point to a destination. As a total,
multiple pedestrian flows reproduce rather realistic
pedestrian flows. We can also use QualNet or OPNet
as a network simulation part in the proposed frame-
work. Details are described in Section 5.4.

Compared with our preliminary studies [5,34]
that presented the basic concept of the UPF mobil-
ity generation method and the basic design of the
CPE model, respectively, this paper gives a more
formal and precise description of their design and
implementation. Also, we added two experiments
that evaluated the accuracy of mobility (Section
6.2) and two case studies that evaluated realistic
applications and protocols with UPF mobility sce-
narios using the MobiREAL simulator (Section
6.3). Through the case studies, we could confirm
that realistic (thus non-uniform) node movement
and position distribution have a significant influence
on performance of mobile wireless network systems.
This fact encourages us to address the effectiveness
of our UPF mobility and MobiREAL toolset pre-
sented in this paper. Also, we made several minor
but important modifications to the MobiREAL
simulator to enhance its capability. For example,
we refined and simplified the CPE model to be har-
monized with the UPF mobility scenarios and
enhanced the facility of the MobiREAL animator
to support statistical data representation. As a con-
sequence, the contribution of this paper is that we
present a complete toolset for the development of
protocols and applications and prove its usefulness
through case studies.

3. Deriving urban pedestrian flows from simple

observations

To generate a UPF scenario, we give a street map
of the simulation field as a graph called a street
graph, and possible paths of pedestrians on the
street graph. We also give average densities of
pedestrians on some streets. These densities can be
simply obtained by fixed-point observations and
so on. Then for each path, we calculate the number
of pedestrians that come into the path per unit of
time (this number is called flow rate) using a linear
programming (LP) technique, where the maximum

error between the density obtained from the obser-
vation and that derived from the LP solution is min-
imized. Using the derived flow rates, the UPF
scenario generation tool generates a UPF scenario
that can be used in the MobiREAL simulator. This
will be described later.

3.1. User inputs

3.1.1. Simulation field

A simulation field may contain polygons that
represent obstacles such as buildings and an undi-
rected street graph G ¼ ðV ;EÞ where V and E repre-
sent geographic points and streets, respectively
(Fig. 1). The geographic points are set at intersec-
tions and entrances to buildings, stations, terminals,
underpasses, shopping centers and so on. For each
edge eij 2 E, the width W ij of the street is also given.

3.1.2. Pedestrians’ paths

In urban areas, many types of pedestrians are
walking around for different purposes. Commuters
usually get off trains and go straight to their transfer
points or offices. Shoppers visit their favorite shops
and remain for a while. We estimate the possible
walking paths of pedestrians and represent them
as a set R of acyclic paths on street graph G. Each
path starts and ends at vertices that can be starting
points and destinations like stations and buildings.
We note that if a path contains a loop, we may
regard this loop as another path and separate it
from the original path. Then we can avoid loops
even though the given paths contain them.

It may be difficult to enumerate all of the possible
paths. Therefore, we may use the following simple
enumeration. In general, pedestrians are considered
to walk along the shortest paths. So, we specify
some points where many people appear or disap-
pear (e.g., stations and shops) and compute the
shortest path for every pair of these points. For each
path computation, we can choose one of several

Fig. 1. Simulation field and street graph.
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options case by case. For example, considering the
fact that people tend to walk along major streets,
we put some weights that prioritize these streets in
the shortest path construction algorithm.

3.1.3. Observed density of pedestrians
Next, we have to determine a flow rate of each

path, that is, the number of pedestrians that come
into the path per unit of time. We give the densities
on some streets measured in the real world and
derive flow rates based on these values. We let
EMð� EÞ denote the set of edges on which densities
of pedestrians are observed. For each edge eij 2 EM ,
we let Dij denote the observed density on the edge.

In general, for the node density d on an edge, the
pedestrian rate g on the edge (i.e., the number of
pedestrians going into the edge per second), the
speed v of pedestrians on the edge and the width
w of the edge, the following equation holds:

dðperson=m2Þ ¼
gðperson=sÞ

wðmÞ � vðm=sÞ
: ð1Þ

It is known that the speed of a pedestrian follows
the negative increase of density. Therefore,

v ¼ �k � d þ v0; ð2Þ
where k and v0 are positive constants. Here, v0 is the
average speed of the pedestrian in a sparse area.
Also on any (very) crowded street, a particular den-
sity (say Dmax) was observed when the speeds of
pedestrians are very close to 0. Therefore, from
(2), we obtain

�k � Dmax þ v0 ¼ 0: ð3Þ
Finally, from Eqs. (1)–(3), we obtain the following
pedestrian rate calculation function G from the den-
sity d and width w of the edge:

g ¼ Gðd;wÞ ¼ v0 � w � d � 1� d
Dmax

� �
: ð4Þ

We should select streets to observe by considering
the characteristics of the field geography and the de-
sired preciseness of the reproduction. The solution
will become more precise if we obtain more infor-
mation about densities. We evaluate the relation-
ship between the number of streets and the
preciseness of the result in Section 6.2.1.

3.2. Determining flow rates

Next, we describe the algorithm to derive flow
rates from the observed pedestrian density. Given

an undirected graph G, the width W ij of each edge
eij 2 E, a set R of paths, and the observed density
Dij on each edge eij 2 EM , the algorithm derives
the flow rate of each path in R, minimizing the max-
imum error between the derived and observed den-
sities on the edges.

To formulate this problem as an LP problem, we
introduce a variable fk representing the flow rate of
path rk 2 R and a variable gij representing the
pedestrian rate on edge eij 2 E. We also introduce
a variable d, which means the maximum error of
the derived pedestrian rate from the corresponding
pedestrian rate given by Eq. (4).

For each edge eij, its pedestrian rate is the sum of
flow rates on eij. Therefore, the following equation
holds:

8eij 2 E; gij ¼
X

rk2R^eij2rk
fk: ð5Þ

The following inequality limits the errors of derived
pedestrian rates by d, where function G is given by
Eq. (4):

8eij 2 EM ; �d 6
GðDij;W ijÞ � gij

GðDij;W ijÞ 6 d: ð6Þ

Also pedestrian rate gij has an upper limit derived
from the nature of function G. From the definition
of G in (4),

gij ¼Gðdij;W ijÞ;

¼ v0 � W ij � dij � 1� dij

Dmax

� �
;

¼� v0 � W ij

Dmax

d2
ij þ v0 � W ij � dij;

¼� v0 � W ij

Dmax

dij � Dmax

2

� �2

þ v0 � W ij � Dmax

4

is obtained. Knowing that v0, W ij and Dmax are all
positive constants, the following inequality is
obtained:

gij 6
v0 � W ij � Dmax

4
: ð7Þ

Our objective is to minimize the maximum error d.
Under constraints (5)–(7), the objective function is
defined as follows:

min d: ð8Þ
By solving this LP problem, we obtain the flow rate
fk for each path rk 2 R minimizing the maximum er-
ror d of the derived pedestrian rates. Using the de-
rived flow rates, a UPF mobility scenario that can

K. Maeda et al. / Ad Hoc Networks 7 (2009) 153–170 157



be used in MobiREAL is generated automatically
by the UPF scenario generation tool. The details
of this tool are given in Section 5.1. In the scenario,
we generate node instances following the derived
flow rate fk, and the nodes walk along the path rk.
A path with flow rate 0 means that there is no pedes-
trian flow along the path.

4. Condition probability event model

The UPF model focuses on macroscopic move-
ment of nodes, while the condition probability event
(CPE) model focuses on the microscopic behavior
of the individual nodes. The CPE model allows us
to dynamically and more precisely control the
behavior of nodes on pedestrian flows determined
by the UPF model. With this model, we may
describe such behavior that a mobile node makes
a detour (changes to another pre-scheduled route)
when it receives traffic jam information through
MANETs or cellular networks.

We would like to note that general-purpose pro-
gramming languages such as C or Perl allow a wide
variety of descriptions, and therefore can be used to
describe the detailed behavior of nodes. However,
this generality may confuse designers. Thus we pro-
pose the CPE model for simulator users to simply
describe the behavior of nodes (simulation scenar-
ios). In the CPE model, the next action of a node
is determined by its current status (position, direc-
tion, velocity, scheduled route and so on) and envi-
ronmental factors (global time, information from
network systems and so on), and this decision can
be probabilistic. This model captures well humans’
decision-process of actions (action is probabilisti-
cally determined by current status and environ-
ment), allowing reasonable abstraction of
unnecessary behavior for the fidelity of modeling.

Thus it has much better applicability for behavior
modeling than general languages.

We depict our concept of modeling pedestrian
behavior in Fig. 2. Formally, the CPE model con-
sists of a list of rules where each rule is a tuple of
a condition, a probability and an action, and node

state variables, which represent the status of each
node and are introduced later. The rules can refer
to and update node state variables like velocity vec-
tor and position of the node. We may specify the
same set of rules to all nodes or a different set of
rules to each group of nodes. We specify a logical
formula as a condition, a value in the range of
[0, 1] as a probability and a set of substitution state-
ments that may update values of the node state vari-
ables as an action. For each increment of the
simulation clock (referred to as T), all rules satisfy-
ing the given conditions are executed one-by-one
from the top of the list with the specified
probabilities.

Each node has six node state variables: current
position P, scheduled route ROUTE (sequence of
vertices), base velocity V f , actual velocity vector ~V ,
input data AI of the node to the network system
(application input) and output data AO from the
network system to the node (application output).
These variables are referred to and updated by the
rules. When a node is generated according to the
UPF scenario derived in Section 3, an instance of
the CPE model of the node is initialized as follows.
The path rk 2 R is set to the initial value of route
ROUTE, and the velocity v0 in Exp. (2) is set to
V f , which represents the velocity in a sparse area.
Then normal descriptions in the CPE model contain
such rules that update ROUTE and V f followed by
the rules that update current position P and actual
velocity vector ~V accordingly. These rules determine
the basic behavior of nodes that walk along the

Node

Variables Network Application
void TestApplication::StartApp(){
l4Proto->Send( defaultSize);
…
CancelTimer( pendingEvent);
pendingEvent = new TimerEvent( SEND_PKT);
timer.Schedule( pendingEvent, nextSendTime, this);

}

Rules
Condition1, Prob.1, Action1
Condition2, Prob.2, Action2
Condition3, Prob.3, Action3

…
ConditionN, Prob.N, ActionN

Refer to, Update

V
P

Vf ,  ROUTE
AOAI

AO
AIRefer to

CPE

Other NodesV, P

Fig. 2. Interaction between CPE instance and network application.
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routes. The actual velocity j~V j cannot be greater
than the base velocity V f , but may be smaller when
the node cannot walk smoothly in a crowd.

The CPE model assumes that an application pro-
gram of the network simulator is notified of the
value of application input AI, and updates the value
of application output AO. In the rules of the CPE
model, we can set any value to application input
AI but can only read application output AO. The
variables AI and AO enable simulator users to
describe interactive behavior of nodes with the
application program. We note that in order to
enable the application program and the CPE
instance to interpret AI and AO, several libraries
are offered to mitigate the developers’ effort.

We offer many pre-defined functions to help the
developers to specify realistic behavior of nodes in
the CPE model. For example, we provide a function
that returns the positions and actual velocity vectors
of nodes within eyesight. A part of them are pre-
sented in the following example.

4.1. Example description in CPE model

Here, we consider the following MANET system.
Shoppers holding information terminals with short
range radio communication devices exchange useful
information (e.g., sales information) when they
encounter each other.

We present a description written in the CPE
model for the shoppers in Table 1. Rule E1
describes the behavior that changes the scheduled
route ROUTE dynamically, according to an appli-
cation output AO. If the shopper receives informa-
tion ‘‘SHOP_A” given by the application, he/she
changes his/her destination to the vertex
‘‘SHOP_A” with probability 0.3. This is done by
updating the ROUTE variable to the shortest path
from current position P to the vertex specified by

Point(SHOP_A). Rule E2 describes the behavior
that gives an input to the application depending
on the position of the given node. More concretely,
the node gives an application input ‘‘SHOP_A” to
variable AI with probability 0.1 when he/she
reaches the vertex specified by Point(SHOP_A).
We note that the application is programmed to dis-
tribute the given input to the neighbor nodes. Rule
E3 implements the behavior that follows a traffic
signal at intersection INT_1. A function ‘‘stop( )”
used in the action part sets 0 to the node’s base
velocity V f temporarily. The condition of E3
becomes true if the simulation time T (min.) is even,
which means the period of the red light.

Rules E4 and E5 define fundamental behavior
based on the UPF mobility. Rule E4 calculates
velocity vector ~V from current position P, route
ROUTE, base velocity V f and the position of the
neighbor nodes neighborsðP ; V fÞ. We note that we
have modeled evasive actions (turn or slow down)
against the approaching people. The UPFvector( )
in Rule E4 calculates velocity vector ~V based on this
model to make the behavior of the node more real-
istic. Rule E5 updates current position P based on
velocity vector ~V calculated by Rule E4.

5. MobiREAL

We have developed a network simulator called
MobiREAL to simulate MANET systems with the
realistic behavior of nodes based on the UPF model
and the CPE model.

The architecture of the MobiREAL simulator is
shown in Fig. 3. MobiREAL is composed of a net-
work simulator that simulates network systems, a
behavior simulator that simulates the movement
of nodes, a UPF scenario generator and an anima-
tor. The behavior simulator takes three inputs, a
simulation field, a UPF scenario and a set of CPE

Table 1
Example behavior description of shoppers in CPE model

Condition Prob. Action

E1[exp.] AO == ‘‘SHOP_A”[receives string ‘‘SHOP_A” from the
application]

0.30 ROUTE = shortest_path(P, Point(SHOP_A)); [change
destination to vertex SHOP_A]

E2 P == Point(SHOP_A) [arrives at vertex SHOP_A] 0.10 AI = ‘‘SHOP_A”; [give an application input
‘‘SHOP_A”]

E3 (P == Point(INT_1)) ^ ((T%2 min) < 1 min) [stops at
vertex INT_1 with traffic light which changes every min.]

1.00 stop( ); [wait until the light changes to green]

E4 – [Execute always] 1.00 V = UPFvector(Vf, P, ROUTE, neighbors (P, Vf));
[calculate velocity vector from state various variables]

E5 – [Execute always] 1.00 P = UpdateLocation(P, V); [update position]
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scenarios. As a simulation field, we specify the struc-
ture of streets and buildings that interfere with radio
propagation. As a UPF scenario, we specify the
routes of nodes and their node generation rates
(flow rates). According to the UPF scenario, Mobi-
REAL generates node instances that move based on
the CPE scenarios. With the UPF scenario genera-
tor, we can generate a simulation field and the cor-
responding UPF scenario graphically and
intuitively. For the network simulator, we specify
application programs. In each application compo-
nent running on a mobile node, interaction with
the corresponding CPE instance may be described.

Since the simulator part of MobiREAL is com-
posed of two independent programs (i.e., behavior
simulator and network simulator), we have imple-
mented MobiREAL according to the following con-
cept. First, both simulators hold the positions and
speeds of nodes independently and synchronize the
progress of simulations. The behavior simulator cal-
culates the latest positions, directions and speeds of
nodes, and sends them to the network simulator
(arrow (a) in Fig. 3). In response, the network sim-
ulator updates its information about the nodes
according to the received data, sends outputs of
the application to the behavior simulator (arrow
(b) in Fig. 3) and continues the simulation. The
behavior simulator can perform dynamic behavior
change according to this information.

5.1. UPF scenario generator

We have developed the MobiREAL UPF sce-
nario generator. Showing a BMP graphic map file
like Fig. 4, simulator users can specify a street graph
through the GUI with their mouse devices. We spec-
ify two attributes (width and observed node density)
for the street. This tool also assists in generating
potential candidate routes as described in Section
3.1.2. Then this tool generates a program code of
the UPF scenario that can be run in MobiREAL

where the linear programming problem solver
lp_solve [35] is used to calculate the flow rate on
each route.

5.2. Network simulator

The network simulator needs to synchronize with
the behavior simulator to exchange information,
update the positions and the speeds to follow the
behavior simulator, and process application inputs
and outputs. We have developed the network simu-
lator by extending and modifying GTNetS [6] devel-
oped at the Georgia Institute of Technology.
GTNetS aims at improving the scalability of large-
scale simulation, so it has a mechanism for parallel
simulation of wired networks. For simulation of
wireless networks, GTNetS also supports routing
protocols like DSR, AODV and NVR (wireless
form of Nix-Vector routing) and standard MAC
and physical layer protocols like IEEE 802.11.

In GTNetS and many other simulators, the
movement of nodes is bounded by boundaries, or
a node moving through a boundary appears from
the other side. This means that the number of nodes
is fixed throughout simulations. On the other hand,

Fig. 3. MobiREAL simulator overview.

Fig. 4. GUI support for map and UPF scenario generation.
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our mobility requires dynamic generation and dele-
tion of nodes. In our MobiREAL network simula-
tor, we have modified the node management
function of GTNetS to implement the dynamic gen-
eration and deletion of nodes. Also, we have modi-
fied the simulation module of the physical layer to
implement radio propagation attenuation under
the existence of obstacles in order to achieve more
realistic wireless network simulation. In this radio
propagation model, attenuation when the radio
penetrates obstacles is considered. For this purpose,
simulator users can specify an attenuation coeffi-
cient for each obstacle.

5.3. Animator

The MobiREAL Animator visualizes the traces
of the simulation. Visualization of the simulation
results is very useful for designing, debugging and
presenting network systems. In particular, visualiz-
ing mobility of nodes is mandatory to confirm their
realistic behavior.

MobiREAL Animator runs on the Microsoft
Windows platform, and has been developed using
DirectX. Animator can animate the movement of
nodes, the topology of wireless links, packet propa-
gation and so on. We can choose whether these
objects are to be displayed or not. Each mobile node
is represented as a small circle, and a semi-transpar-
ent concentric circle represents its radio range. Each
packet transmission is drawn by concentrically
growing circles with colors. First, a circle with 1
pixel radius is drawn when a packet is sent. Then
the radius of the circle gradually grows until it
reaches the radio range of the node sending the
packet. The color of nodes can be freely set in a net-
work application program. For example, Animator
can show the nodes that received certain packets in

red and others in blue. A snapshot from Animator is
shown in Fig. 5a.

Animator can also show some measured metrics
like node density and packet loss rate as shown in
Fig. 5b. In this function, a simulation field is sepa-
rated into grid cells, and they can be color-coded
according to the measured values. Thus users can
analyze, for example, the influence of geography
on the density of nodes, and the relationship between
the density of nodes and network performance.

For interested readers, several movies and snap-
shots of Animator are presented on the MobiREAL
web page [36].

5.4. Tool support for existing simulators

The MobiREAL behavior simulator, Mobi-
REAL Animator and MobiREAL UPF scenario
generator can be used as independent programs.
Therefore, instead of GTNetS, other simulators
such as ns-2, Qualnet and GloMoSim may be used
as the network simulator part of MobiREAL simu-
lator. If the interaction between the behavior simu-
lator and the network simulator is disabled, we can
use the trace file generated by the behavior simula-
tor by converting it into the corresponding inputs
for the trace mobility of those simulators. But in this
case, we cannot use application input/output (AI/
AO in Section 4 in the CPE model.

If we wish to let the behavior simulator interact
with those network simulators, we must add such
an interaction mechanism to the network simula-
tors. Usually, wireless network simulators including
GTNetS have a ‘‘mobility class”, in which behavior
of mobile nodes is described. In the case of the
MobiREAL simulator, we have enhanced the
mobility class of GTNetS so that the network
simulator can periodically replace the speeds and

Fig. 5. Snapshots from MobiREAL Animator.
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directions of nodes with the latest ones received
from the behavior simulator. According to this con-
cept, we have accomplished cooperative execution
of GTNetS and the MobiREAL behavior simula-
tor. In the case of GloMoSim, MobilityTrace class
can be modified in the same way. Similarly,
MobileNode class and PositionHandler class should
be enhanced in the case of ns-2.

6. Experiments

We have carried out several experiments. Our
objective is threefold. First, we would like to con-
firm that our UPF methodology and the related
MobiREAL toolset can model the pedestrians’
flows in the real world with high fidelity, without
a great deal of manpower. For this purpose, we con-
ducted fixed-point observation in downtown Osaka
and derived the pedestrians’ flows. The result of this
experiment given in Section 6.1 has shown that our
scheme could reproduce a position distribution very
similar to the observed ones. Second, we would like
to evaluate the trade-off between the fidelity and the
computation cost of mobility by two experiments in
Section 6.2. One evaluation is for the impact of the
amount of given density information in the deriva-
tion of the UPF scenario, and another one is for
the impact of the synchronization overhead between
the behavior simulator part and the network simula-
tor part of MobiREAL on the accuracy of simula-
tion. Finally, we would like to show that the non-
uniform distribution of the node movement and
position affects performance of mobile wireless net-
work systems. For example, in the real world, the
location of wireless base stations considerably
affects the quality of multi-hop wireless network ser-
vices while it will have little impact with uniform
movement and position distribution of nodes. This
fact encourages us to assert the effectiveness of our
UPF model presented in this paper. Thus, to prove
the fact, we conducted performance evaluation of
the following application and protocol: (i) real-time
data streaming from a stationary base station to a
mobile client via MANET; and (ii) a mobility man-
agement protocol for wireless mesh networks using
the mobility prediction as in [37,38]. The results
are given in Section 6.3.

6.1. Fidelity of reproduced pedestrian flows

We have measured the node density on each
street in downtown Osaka. Using the obtained data,

we have determined pedestrian flows based on our
UPF technique described in Section 3 to see the sim-
ilarity of the derived and observed density of
pedestrians.

Two students observed the node density on the
streets beginning at 14:00 on Sunday. At each obser-
vation point, we just took a photo with a digital
camera, so the observation period itself was an
instant. Next, we measured the width and length
of the street captured in the photo. Finally, we cal-

Table 2
Measured node density on streets in downtown Osaka

Edge Width Density

9–8 7 0.033
8–7 8 0.059
7–34 8 0.041
34–5 8 0.041
5–4 4 0.025
4–2 10 0.013
15–13 6 0.005
13–10 6 0.005
10–6 8 0.030
14–15 12 0.008
15–16 8 0.006
16–32 12 0.012
32–17 12 0.012
17–18 12 0.013
24–19 12 0.032
19–20 12 0.035
20–21 12 0.023
21–22 12 0.027
8–14 8 0.045
14–19 12 0.026
19–23 8 0.058
3–7 14 0.060
7–10 6 0.065
10–31 8 0.046
31–16 8 0.045
16–20 12 0.008
10–12 12 0.015
18–22 12 0.026
12–17 12 0.012
17–21 12 0.012
11–30 8 0.040
30–12 8 0.040
0–5 14 0.034
5–6 7 0.050
6–11 12 0.060
11–18 12 0.021
1–4 12 0.002
4–6 5 0.030
30–26 3 0.013
30–27 3 0.066
28–31 3 0.025
32–29 3 0.012
34–33 3 0.053

width: m, density: person/m2.
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culated the density of pedestrians using those values
and the number of pedestrians in the photo. The
obtained data is shown in Table 2. The map of
downtown Osaka with the corresponding street
graph is shown in Fig. 6. The size of the field is
500 m � 500 m and the graph includes 35 vertices
and 44 edges. It took two students only about a half
hour to obtain the average densities on the 43
streets.

As candidates for nodes’ source or sink points
(destination points), we selected 21 points located
near shops, major intersections with subway
entrances and the border of the field. We calculated
the shortest path for each pair of the 21 destination
points, and thus 210 routes were found as a
total. We assumed that v0 ¼ 1:39 m=s and Dmax ¼
1:4 person=m2. Then we constructed 130 linear con-
straints that included 253 parameters (variables).
lp_solve [35] was used to solve the given LP problem
and the solving time was less than 1 s.

We show the result in Table 3. When we obtained
the solution of the LP problem, the maximum error,
which was minimized in the LP problem was 9.09%
(0.102 person/s) and the mean error was 8.74%
(0.030 person/s). We would like to note that since
there is no absolute benchmark to compare with,
there is no way to thoroughly show the fidelity of
this result. However, in the general consensus we
can say that this error is in the acceptable range.

These simulation settings and the obtained UPF
mobility were also used in the experiments described
in the following subsection.

6.2. Accuracy of mobility

Modeling mobility is to pursue the balance
between fidelity and simplicity. In this section, wewill
show two experiments that evaluate the trade-off

between accuracy and the computation cost ofmobil-
ity. In Section 6.2.1, we evaluated the impact of the
amount of given density information on the accuracy
of UPF mobility. In Section 6.2.2, we evaluated the
impact of the synchronization interval between the
network simulator part and the behavior simulator
part of MobiREAL (i.e., simulation overhead) on
the accuracy of the simulation. We hope our experi-
mental results are helpful for modeling work.

6.2.1. Density specified ratio and reproduction quality

of derived flows

In this experiment, we evaluated the impact of
the amount of given density information on the

Fig. 6. Downtown Osaka.

Table 3
Derived flow rates

Routes Flow rate

g0_11 0.375
g0_20 0.121
g0_24 0.036
g0_3 0.069
g1_18 0.026
g1_23 0.010
g1_33 0.005
g2_3 0.110
g2_11 0.057
g3_9 0.286
g3_11 0.105
g3_16 0.046
g3_23 0.326
g3_28 0.078
g4_11 0.108
g6_11 0.176
g6_16 0.258
g6_18 0.090
g6_23 0.048
g9_16 0.053
g9_25 0.006
g11_16 0.146
g14_21 0.002
g18_21 0.174
g18_23 0.027
g18_25 0.398
g18_27 0.145
g18_33 0.052
g20_23 0.101
g21_23 0.026
g23_24 0.027
g24_25 0.396
g24_28 0.002
g24_33 0.022
g26_29 0.029
g26_33 0.020
g27_33 0.096
g28_29 0.016

Flow rate: person/s, flow rates of all the other routes were zero.
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accuracy of UPF mobility. We observed the node
densities on the 43 streets as mentioned in Section
6.1. In this section, we used the part of the observed
43 density information (from 22 up to 39 chosen
randomly from the 43 density information) as an
input of LP and evaluated the error of the density
on the derived UPF flows. Table 4 shows the aver-
age/maximum error between the observed pedes-
trian rate and the derived one (jobserved�
derivedj) and its ratio (jobserved�derivedj

observed
� 100). Here,

‘‘specified” is the error only on the streets where
density was given, but ‘‘all” is the error on all
streets. For the comparison we also simulated a
modified version of the random walk mobility called
random walk with obstacles (rwalk/ob) and counted
the pedestrian rate of the model. In rwalk/ob, each
node moves along the given street graph. At each
corner, the node selects the neighboring corner at
random and moves toward it. We used the same
street graph in both UPF and rwalk/ob. We also
show the error between the pedestrian rate of the
rwalk/ob and the observed rate.

The number of LP constraints decreases as the
amount of given density information (the number
of specified streets) decreases, but the number of
LP variables is the same for all cases. The error
on the specified streets decreases as the number of
specified streets decreases because the constraints
are relaxed, but the error on the unspecified streets
increases. The error on the unspecified streets varies
from 0 to 900. The result shows that losing little
density information tremendously increases errors
at specific points. With more detailed analysis, we
found that the observed density that extremely dif-
fers from the neighbors tends to cause large error
if such density information is not given to the LP
problem. Consequently, we should observe as many
streets as possible, being especially careful about the

streets with high or low node densities. As future
work, we will study a method to fill in the unknown
densities from the known densities by using empiri-
cal knowledge.

6.2.2. Time for interaction and position error
In this experiment, we evaluated the trade-off

between the accuracy of the node position and the
synchronization cost. In the simulation of Mobi-
REAL, the behavior simulator holds accurate posi-
tions of nodes. The network simulator periodically
synchronizes with the behavior simulator, receives
the positions and velocity vectors of nodes, and
calculates current nodes’ positions using received
values until the next synchronization. If the syn-
chronization interval is too long, the velocity vector
changed by the behavior simulator may cause a
large error between the positions held by two simu-
lators. However, if the synchronization interval is
too short, the computation cost for the synchroniza-
tion increases.

We used the mobility scenario derived in Section
6.1. The speed of the node followed uniform distri-
bution between 1.0 m/s and 2.0 m/s. The simulation
time was 100 s and the simulation granularity of the
behavior simulator was set to 0.2 s. Results are
shown in Table 5. Here, the error of the node posi-
tion is defined as the error between the position
which the behavior simulator holds and that which
the network simulator holds. The error was sampled
just before the network simulator updated its node
position by the synchronization.

Obviously, there is a trade-off between the accu-
racy of the node position in the network simulator
and the total computation time for the synchroniza-
tion (‘‘synchronization time” in Table 5). The error
reaches zero when the synchronization interval is
equal to the simulation granularity of the behavior

Table 4
Density specified ratio and error of pedestrian rate

Number of specified streets 43 39 34 30 26 22 rwalk/ob

Number of constraints 130 122 112 104 96 88 –

Specified
(ave.)

Person/s
(%)

0.0304 (8.74) 0.0273 (7.81) 0.0204 (5.91) 0.0139 (3.98) 0.0112 (3.25) 0.00688 (2.04) –

Specified
(max)

Person/s
(%)

0.102 (9.09) 0.102 (9.09) 0.102 (9.09) 0.101 (9.00) 0.0984 (8.82) 0.0938 (8.82) –

All (ave.) Person/s
(%)

0.0304 (8.74) 0.0445 (13.7) 0.0645 (21.7) 0.0861 (31.2) 0.111 (43.7) 0.144 (59.5) 0.270 (253)

All (max) Person/s
(%)

0.102 (9.09) 0.449 (135) 0.626 (265) 0.738 (408) 0.801 (622) 0.933 (901) 0.825 (2170)
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simulator. For the maximum speed V of nodes and
the synchronization interval T, the error must be
less than 2VT (theoretical limit of the maximal
error). So the synchronization interval is considered
short enough if 2VT is far smaller than the commu-
nication range of the node. In our simulations, we
set the synchronization interval to 1 s.

6.3. Performance evaluation of mobile wireless

networks with UPF mobility

6.3.1. Application example 1: data streaming on

MANETs

In this experiment, we carried out simulation of
real-time data streaming with the assistance of
MANETs. In the simulation scenario, real-time
data such as movies are delivered by multi-hop relay
from a short-range base station such as an Internet
gateway to mobile clients. A route is established by
the DSR protocol from the base station to each cli-
ent. Through this scenario, we examined our expec-
tation that different placements of base stations
cause considerable performance distinction if realis-
tic (thus non-uniform) position distribution is
assumed, but little difference under uniform ones.
If this is true, this fact emphasizes the necessity of
realistic mobility.

Fig. 7a shows the simulation field. In the simula-
tion, each client receives a 56 kbps movie for 180 s.
We chose 120 clients at random at every 180-s inter-
val. We compared our UPF mobility scenario mod-
eled in Section 6.1 and random walk with obstacles
(rwalk/ob). We used the same street graph in both
UPF and rwalk/ob. We used IEEE802.11 DCF with
the RTS/CTS mechanism as the MAC protocol.
The radio range was set to 100 m. In the simulation,
we used a simple radio attenuation considering line-
off-sight propagation only. The obstacles were
placed as shown by the grayed polygons in Fig. 7a.

We chose three candidate points for the location
of the base station where node densities are quite
different from each other in the UPF model. To
measure the node density in the field, we may
exploit the capability of the Animator, which can
show the node density in each square section as
shown in Fig. 7b. In this figure, the depth of gray
in each section represents the degree of node con-
centration (i.e., deeper gray means higher density).
Then we selected the three points A, B and C in
Fig. 7a as the candidate positions for a base station
placement. A, B and C correspond to high-, low-
and middle-density sections, respectively. Then we
measured the packet arrival ratio and the average
path length to see the performance difference.

Table 5
Time for interaction and position error between network and behavior simulators

Synchronization interval (s) 0.2 0.4 1.0 2.0 4.0 10.0 20.0

Synchronization time (s) 100.3 58.5 26.2 13.5 7.0 3.2 1.9
Average error (m) 0 0.004 0.028 0.090 0.250 1.005 3.114
Maximum error (m) 0 0.789 2.816 5.722 13.497 35.765 66.372
Theoretical maximum (m) 0.8 1.6 4.0 8.0 16.0 40.0 80.0

Fig. 7. (a) Simulation field and candidate points for location of base station. (b) Graphical presentation of node density (snapshot from
the MobiREAL animator).
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Fig. 8 shows packet arrival ratio at the destina-
tion, and Fig. 9 shows the average hop length to
the destination. As expected, the packet arrival ratio
of each case with rwalk/ob is almost the same. On
the other hand, we can see the difference in UPF
mobility. The difference becomes small as the num-
ber of nodes increases, but still remains in the case
of 80–90 nodes. The average of the hop length in
Fig. 9 is small when the number of nodes is also
small because it is hard to establish a route with
many hops. When the number of nodes is larger
than 50, base station C placed at the center of the
field provides the shortest length of all the place-
ments in rwalk/ob. Although, in UPF, there is a lit-
tle difference between the hop length in the case of
the base station C and that of the base station A
placed at the upper right. It is known that as the
density becomes higher, a route is shorter because
one hop length can be longer in high node density
situation. In addition, there are many nodes near
the base station A so that the randomly chosen cli-
ent walks near the base station A with a higher
probability in UPF than in rwalk/ob. From these
results, we found that base station C in the mid-

dle-density section could achieve almost the same
packet arrival ratio as that of base station A in
the high-density section, and that base station A
could provide similar hop length with base station
C in the center of the field.

Consequently, distribution of the density may
influence the performance of the location-dependent
applications such as location planning of base sta-
tions. It is necessary to use a mobility model that
can reproduce realistic position distribution like
the UPF model to evaluate the performance consid-
ering the characteristics of the target field.

6.3.2. Application example 2: prediction-based

mobility management in wireless mesh network
As another example, we deal with mobility man-

agement for wireless mesh networks composed of a
set of base stations. Each client connects to one of
the base stations (mesh routers) to utilize the net-
work. The radio ranges of a client and a router were
100 and 200 m, respectively. The placement of mesh
routers is shown in Fig. 10 where polygons represent
obstacles and others are walkways. The mesh rou-
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ters were placed to cover almost all the pedestrians’
walkways.

The basic concept of mobility management
schemes developed for cellular or mobile IP net-
works can be applied to wireless mesh networks
[39]. In this experiment, we evaluate the efficiency
of the prediction-based mobility management pro-
tocol that reduces the location updates by predicting
the current location of mobile nodes from past loca-
tions. There are many protocols that utilize mobility
prediction for mobility management [37,40,41]. The
protocol of this experiment predicts mobility by the
approach based on data mining like [38].

Each client holds its movement log as a sequence
of neighbor routers like ‘‘r1; r2; . . . ; rn”. We assume
that the client can recognize the neighbor router
by a hello message or traffic for other clients. We
also assume that each mesh router has enough

movement logs of clients collected beforehand in
its database. In this protocol, the client sends its
movement log to the router in the location update
process. The router predicts the movement of the
client using its database. The client and the router
utilize the prediction result for the next location
update and paging, respectively.

The location update initiated by the client con-
sists of the following steps:

1. First, the client that executes the location update
sends a location update packet including its
movement log to the neighbor router.

2. The router that receives the location update
packet holds the client ID (e.g., IP address) and
the current time. Then, the router searches for
its holding movement logs that contain the same
sequence as that in the received packet. Next, the
router selects up to K routers to which the client
likely moves (called candidate routers and K is
given in advance) and sends the IDs of the rou-
ters to the client. The details of the router selec-
tion algorithm are shown in Fig. 11.

3. The client holds the received candidate router
IDs.

If the client recognizes that he is entering an area
covered by a non-candidate router, then the client ini-
tiates a location update. The router also holds the
candidate routers of the client. If a request for a call
was received, then all the areas of the candidate rou-
ters of the callee are paged at almost the same time.

In the experiment, we simulated the performance
of this protocol in the UPF mobility and in the

Fig. 10. Placement of mesh routers.

Fig. 11. Algorithm to select candidate routers.
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random walk with obstacles (rwalk/ob). We
adjusted the node lifetime of rwalk/ob so that the
distribution of the lifetime can almost be the same
as that of UPF mobility. Other simulation settings
are the same as in Section 6.3.1.

We calculated the total cost per call arrival. Here,
U is the cost for paging the area of a router and V is
the cost for a location update. Call-to-mobility ratio
(CMR) represents the relative frequency of call rate
and mobility and is defined as ‘‘an average stay time
in the area that a router covers” divided by ‘‘an
average interval of the call arrival”. Fig. 12a shows
the cost per call for U = 10, V = 1 and CMR = 0.1
as applied in [37,42]. The cost is smaller in UPF
than in rwalk/ob for K 6 4. The possible flow of
the node is limited in the UPF so we can limit can-
didate routers. On the other hand, rwalk/ob has
smaller cost for K P 5. Nodes in UPF go far away
in a short time because they walk along the shortest
path, but nodes in rwalk/ob decide movement ran-
domly so some of them may return to the same
point. This difference seems to affect the total num-
ber of the location update. Fig. 12b shows the cost
per call for U = 5, V = 1, CMR = 0.5. K (the max-

imum number of the candidate routers) that has the
smallest cost differs in the two mobility models.

Consequently, from these results, the movement
routes of the nodes have an influence that may not
be negligible in the performance evaluation, espe-
cially of the mobility-aware protocols. We should
carefully choose the mobility model considering this
influence.

7. Conclusion

In this paper, we have proposed a realistic mobil-
ity model called the UPF model and a behavior
description model called the CPE model, and pre-
sented the facility of the MANET simulator Mobi-
REAL, which uses our models for realistic
simulation of MANET applications and protocols.
By the UPF model, we can reproduce realistic
pedestrian flows from data obtained by simple
observation such as fixed-point observation using
digital cameras or web cameras. To our best knowl-
edge, no existing method considers this research
direction. Also, through some experiments, we
showed that we could design several MANET pro-
tocols and applications and verify their performance
on the network topology, which was created by the
UPF model and had never appeared in the existing
random-based mobility models. In addition, using
the CPE model, we can enhance the reality of the
microscopic mobility such as stopping at traffic sig-
nals and slowing down due to congestion. The dis-
cussion about the reality and influence of this
mobility still remains for future research, though
we believe that our UPF/CPE framework provides
reasonable fidelity of mobility modeling to conduct
the performance evaluation of MANET systems in
realistic environments.

Our future work includes more detailed valida-
tion of the influence and fidelity of our mobility
models, comparison of our mobility models and real
traces, and the evaluation of several mobile ad hoc
communication protocols using the UPF/CPE
mobility.
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