Scalable and Distributed Optimization of Shared 3D Object Quality for Large-Scale Hybrid-Metaverses

Yui Maruyama, Tatsuya Amano, Hirozumi Yamaguchi

In Proc. of the 21st Annual IEEE International Conference on Sensing, Communication, and Networking (SECON 2024), pp. 1-9

DOI: 10.1109/SECON64284.2024.10934939

Abstract

Hybrid-metaverses, integrating physical and virtual spaces, face a critical challenge in managing shared 3D object quality across multiple users with diverse preferences and limited network resources. This paper addresses the problem of allocating limited bandwidth for transmitting point cloud representations while maximizing overall user satisfaction. We propose a distributed optimization method that dynamically adjusts 3D object quality based on contextual importance, available resources, and user preferences. Our approach uses Input Convex Neural Networks (ICNN) to model user utility functions and employs the Alternating Direction Method of Multipliers (ADMM) for distributed optimization. Key advantages include scalability, adaptability, and improved quality of experience. Evaluation using open dataset demonstrates significant improvements in user satisfaction and resource utilization compared to baseline approaches. Our method achieves 93-94.6% accuracy in modeling user utility and shows up to 60% faster convergence for scenarios with 30 users, contributing to the balance between high-fidelity representation and efficient data management in hybrid-metaverses.

論文情報

Scalable and Distributed Optimization of Shared 3D Object Quality for Large-Scale Hybrid-Metaverses
Yui Maruyama, Tatsuya Amano, Hirozumi Yamaguchi
In Proc. of the 21st Annual IEEE International Conference on Sensing, Communication, and Networking (SECON 2024), pp. 1-9

関連する研究室活動

関連プロジェクト

新生活様式におけるコミュニティ形成のためのサイバーフィジカル空間共有基盤

新生活様式におけるコミュニティ形成のためのサイバーフィジカル空間共有基盤

NICT(情報通信研究機構)高度通信・放送研究開発委託研究
ウイルス等感染症対策に資する情報通信技術の研究開発 課題C: アフターコロナ社会を形成するICT