LLM-Driven Urban Transportation Simulation Platform

Japan Science and Technology Agency (JST)

JST Strategic Basic Research Programs (PRESTO) [Social Transformation Platform] Co-Creation of the Transformation Platform Technology for Human and Society by Integration of the Humanities and Sciences

This project has been selected for the Japan Science and Technology Agency (JST) Strategic Basic Research Programs (PRESTO), under the research area “[Social Transformation Platform] Co-Creation of the Transformation Platform Technology for Human and Society by Integration of the Humanities and Sciences.”

In cities, people move every day for a wide range of purposes—commuting to work or school, sightseeing, shopping, and attending events. These flows of people affect road and public-transport congestion, the vitality of commercial and tourist areas, and even public safety and evacuation during disasters. For this reason, local governments, transportation operators, and urban planners have long used transportation and pedestrian-flow simulations to examine in advance how the dynamics of a city might change if policies or operations were modified.

The value of simulation lies not only in predicting whether congestion will increase or decrease, but also in enabling “virtual trials” of multiple options—such as timetable revisions, road and infrastructure design, event operations, and information provision (guidance and crowd management)—to support decision-making. Because large-scale experiments are often infeasible in real urban environments, simulation serves as a critical foundation for evaluating interventions before implementing them in the real world.

At the same time, the accuracy of such simulations ultimately depends on how realistically they can represent human decision-making and movement. Conventional transportation and pedestrian-flow simulations typically model behavior using predefined rules or statistical distributions. In reality, however, people’s movements are strongly shaped by context—weather, perceived congestion, companions, familiarity with an area, schedule changes, and information from social media or word of mouth. Even for the same individual, decisions may vary: “I’m in a hurry today,” “I’ll take a different route because it seems crowded,” or “I’ll stop by somewhere on the way.” Such context-dependent decision-making is difficult to capture with fixed rules or average distributions alone, which in turn makes it hard to explain why particular movement patterns emerged.

In this project (a JST PRESTO-selected research topic), we aim to develop a simulation platform that can more deeply understand and reproduce human behavior in urban settings by leveraging the advanced reasoning capabilities and world knowledge of large language models (LLMs). We introduce foundation models such as LLMs as models of human behavior and work toward reproducing flexible decision-making that adapts to context and situations. Furthermore, by integrating real-world data obtained from pedestrian-flow sensing with LLM-based inference of behavioral intent, we aim to build a framework that can interpret the intentions and purposes underlying observed mobility patterns.

By establishing this platform, we expect to make it easier to explain and evaluate not only how people moved in response to changes in urban conditions, but also why they moved that way—thereby improving the practical usefulness of simulation for decision-making related to congestion mitigation, enhanced circulation and visitation, event operations, and disaster preparedness.

Related Publications

Short-Term Crowd Prediction through Continuous Observation
Atsuhiro Yano, Tatsuya Amano, Hirozumi Yamaguchi
ICDCN 2026 Poster/Demo
Bayesian Optimization Approach for Crowd Flow Modeling on Railway Station Platforms
Yu Yasuda, Tatsuya Amano, Hirozumi Yamaguchi
ICDCN 2026 Poster/Demo
実データ同化型シミュレーションに向けた大規模言語モデルによる観光客行動の予測手法
天野辰哉,山口弘純
人工知能学会第二種研究会(計算創律研究会)資料, vol. 2025, no. CSS-001, pp. 34–40, 2025
🏆ITS研究会 奨励発表賞
先見シミュレーションに非同期観測を同化する人流デジタルツイン
矢野敦大, 天野辰哉, 山口弘純
第117回IPSJ-MBL研究会・第103回IPSJ-ITS研究会合同研究発表会
🏆MBL研究会 奨励発表賞
Socially-Adaptive Robot Navigation by Reasoning over Pedestrian Attributes with a Multimodal Large Language Model
劉 旭晴, Farid Ahmed, 天野 辰哉,Hamada Rizk,山口 弘純
第116回モバイルコンピューティングと新社会システム研究会
Student Engagement Measurement Through Micro-Action Detection with Multi-Modal Foundation Model
Masato Matsuura, Tatsuya Amano, Hirozumi Yamaguchi
2025 Fifteenth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), 2025, pp. 1-6
LLM-Powered Embodied Intelligence for Socially-Aware Robot Navigation in Human-Robot Interaction.
Xuqing Liu; Ahmed Farid; Tatsuya Amano; Hamada Rizk; Hirozumi Yamaguchi.
The 19th International Symposium on Spatial and Temporal Data. 2025.
LiDAR による人流デジタルツイン実現に向けて
天野辰哉
人工知能, 特集「都市デジタルツインの現在地とこれから」,2025 年 40 巻 4 号 p. 490-498
大規模人流デジタルツインに基づく屋内移動計画支援システムの設計と開発
矢野 敦大, 天野 辰哉, 山口 弘純
マルチメディア,分散,協調とモバイル (DICOMO2025) シンポジウム論文集 , 2025年6月
Collaborative Lightweight LLM Agents for Daily Activity Summarization on Edge Devices
Kentaro Inohara, Tatsuya Amano, Hamada Rizk and Hirozumi Yamaguchi
Proceedings of the 21st International Conference on Intelligent Environments (IE 2025), Darmstadt, Germany, 2025, pp. 1-4
LLM-Driven Adaptive Autonomous Robot Navigation via Multimodal Fusion for Diverse Environments
Xuqing Liu, Ahmed Farid, Riki Ukyoh, Tatsuya Amano, Hamada Rizk and Hirozumi Yamaguchi
2025 IEEE Intelligent Vehicles Symposium (IV), Cluj-Napoca, Romania, 2025, pp. 2361-2368
A Digital Twin Approach for Crowd Flow Modeling on Railway Station Platforms
Yu Yasuda, Tatsuya Amano and Hirozumi Yamaguchi
IEEE International Conference on Smart Computing (SMARTCOMP), pp. 82-89
🏆ITS研究会 奨励発表賞
思考連鎖統合型SLMモデルによる人に優しいロボットナビゲーションの構築
Xuqing Liu, Ahmed Farid, Tatsuya Amano, Hamada Rizk and Hirozumi Yamaguchi
研究報告高度交通システムとスマートコミュニティ(ITS) 巻 2025-ITS-101, 号 53, p. 1-8, 発行日 2025-05-14
Reference-Free 3D WiFi AP Localization by Outdoor-to-Indoor Bridging
Tatsuya Amano; Hirozumi Yamaguchi; Teruo Higashino
IEEE Open Journal of the Computer Society, vol. 6, pp. 688-700, 2025
Robust Pedestrian Tracking With Severe Occlusions in Public Spaces Using 3D Point Clouds
Riki Ukyo; Tatsuya Amano; Hamada Rizk; Hirozumi Yamaguchi; Takao Moriya
IEEE Transactions on Intelligent Transportation Systems, vol. 26, no. 6, pp. 8411-8423
スマートシティに向けた人流センシングとシミュレーション
天野辰哉
人工知能学会 合同研究会2024(SIGAIs 2024)DOCMAS研究会 招待講演
🏆MobiQuitous2024 Best Paper Award
Simulating Urban Pedestrian Flows by Fusing Wide-Area Location Data and Spot Pedestrian Counts
Masashi Uegaki, Tatsuya Amano, Hirozumi Yamaguchi
EAI MobiQuitous 2024

Other Projects

Development of Formation Flying Technology for Precise Control of Large-Scale Satellite Swarms

Development of Formation Flying Technology for Precise Control of Large-Scale Satellite Swarms

Japan Aerospace Exploration Agency (JAXA)Space Strategy Fund
High-Precision Satellite Formation Flying Technology
Research and Development of Narrow Multi-Beam Forming Technology for Frequency Sharing in Direct Communication between LEO Satellites and Ground Terminals

Research and Development of Narrow Multi-Beam Forming Technology for Frequency Sharing in Direct Communication between LEO Satellites and Ground Terminals

Ministry of Internal Affairs and Communications (MIC)Research and Development for Radio Resource Expansion
地域を支える知のデジタライゼーションと共有基盤

地域を支える知のデジタライゼーションと共有基盤

Japan Science and Technology Agency (JST)CREST
「基礎理論とシステム基盤技術の融合によるSociety 5.0のための基盤ソフトウェアの創出」領域
Integrated Sensing and Communication

Integrated Sensing and Communication

National Institute of Information and Communications Technology (NICT)Innovative ICT Fund Projects for Beyond 5G/6G
Program for Elemental Technologies and Seeds Creation
Society5.0 ライフデザイン・イノベーション研究

Society5.0 ライフデザイン・イノベーション研究

Ministry of Education, Culture, Sports, Science and Technology (MEXT), JapanSociety5.0実現化研究拠点支援事業
Large-Scale Digital Twin Research Team

Large-Scale Digital Twin Research Team

理化学研究所Center for Computational Science
セマンティック通信による多端末連携型の状況理解と消防システムへの適用

セマンティック通信による多端末連携型の状況理解と消防システムへの適用

Ministry of Internal Affairs and Communications (MIC)FORWARD
デジタルインフラ構築部門
街の未来を共視する ~住民・自治体・事業者のトリプレット共創型デジタルツイン~

街の未来を共視する ~住民・自治体・事業者のトリプレット共創型デジタルツイン~

National Institute of Information and Communications Technology (NICT)高度通信・放送研究開発委託研究
データ利活用等のデジタル化の推進による社会課題・地域課題解決のための実証型研究開発